Assembly of Intracytoplasmic Membranes in Rhodobacter Sphaeroides Mutants Lacking Light-Harvesting and Reaction Center Complexes

  • James N. Sturgis
  • C. Neil Hunter
  • Robert A. Niederman
Part of the FEMS Symposium book series (FEMSS)


The intracytoplasmic membrane (ICM) of photosynthetic bacteria contains a number of integral bacteriochlorophyll (BCh1)-protein complexes. In Rhodobacter sphaeroides, these consist of photochemical reaction centers together with the B800-850 and B875 light-harvesting proteins1 which function as peripheral and core antennae, respectively. The B875 and reaction center complexes form the fixed cores of photosynthetic units and are found in a constant molar ratio of ~25:1, respectively [2]. The B800-850 antenna comprises the variable portion of the photosynthetic unit and can reach levels more than three-fold greater than those of B875 under low illumination [2] or in the latter stages of induction of ICM formation at reduced oxygen tension [3]. The ICM is continuous with the cytoplasmic membrane [4, 5] and in vivo surface labeling has demonstrated that the interior of the ICM is accessible from the periplasmic space [6, 7].


Rhodobacter Sphaeroides Photosynthetic Membrane Antenna Complex Reaction Center Complex Photosynthetic Unit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. J. Cogdell, H. Zuber, J. P. Thornber, G. Drews, G. Gingras, R. A. Niederman, W. W. Parson, and G. Feher, Recommendations for the naming of photochemical reaction centres and light-harvesting pigment-protein complexes from purple photosynthetic bacteria, Biochim. Biophys. Acta 806: 185 (1985).CrossRefGoogle Scholar
  2. 2.
    J. Aagaard and W. R. Sistrom, Control of synthesis of reaction center bacteriochlorophyll in photosynthetic bacteria, Photochem. Photobiol. 15: 209 (1972).PubMedCrossRefGoogle Scholar
  3. 3.
    R. A. Niederman, D. E. Mallon, and J. J. Langan, Membranes of Rhodopseudomonas sphaeroides. IV. Assembly of chromatophores in low-aeration cell suspensions, Biochim. Biophys. Acta 440: 429 (1976).PubMedCrossRefGoogle Scholar
  4. 4.
    G. Drews and J. Oelze, Organization and differentiation of membranes of phototrophic bacteria, Adv. Microbiol. Physiol. 22: 1 (1981).CrossRefGoogle Scholar
  5. 5.
    S. Kaplan and C. J. Arntzen, Photosynthetic membrane structure and function, in: “Photosynthesis,” Vol. 1, Govindjce, ed., p. 65, Academic Press, New York (1982).Google Scholar
  6. 6.
    G. A. Francis and W. R. Richards, Localization of photosynthetic membrane components in Rhodopseudomonas sphaeroides by a radioactive labeling procedure, Biochemistry 19: 5104 (1980).PubMedCrossRefGoogle Scholar
  7. 7.
    G. S. Inamine, J. van Houten, and R. A. Niederman, Intracellular localization of photosynthetic membrane growth initiation sites in Rhodopseudomonas sphaeroides, J. Bacterial. 158: 425 (1984).Google Scholar
  8. 8.
    R. A. Niederman, D. E. Mallon, and L. C. Parks, Membranes of Rhodopseudomonas sphaeroides. VI. Isolation of a fraction enriched in newly synthesized bacteriochlorophyll a-protein complexes, Biochim. Biophys. Acta 555: 210 (1979).PubMedCrossRefGoogle Scholar
  9. 9.
    R. A. Niederman, C. N. Hunter, G. S. Inamine, and D. E. Mallon, Development of the bacterial photosynthetic apparatus, in: “Photosynthesis,Vol. 5, Chloroplast Development,” G. Akoyunoglou, ed., p. 663, Balaban, Philadelphia (1981).Google Scholar
  10. 10.
    C. N. Hunter, N. G. Holmes, O. T. G. Jones, and R. A. Niederman, Membranes of Rhodopseudomonas sphaeroides. VII. Photochemical properties of a fraction enriched in newly synthesized bacteriochlorophyll a-protein complexes, Biochim. Biophys. Acta. 548: 253 (1979).PubMedCrossRefGoogle Scholar
  11. 11.
    J. R. Bowyer, C. N. Hunter, T. Ohnishi, and R. A. Niederman, Photosynthetic membrane development in Rhodopseudomonas sphaeroides: Spectral and kinetic characterization of redox components of light-driven electron flow in apparent photosynthetic membrane growth initiation sites, J. Biol. Chem. 260: 3295 (1985).PubMedGoogle Scholar
  12. 12.
    C. N. Hunter, R. van Grondelle, N. G. Holmes, O. T. G. Jones, and R. A. Niederman, Fluorescence yield properties of a fraction enriched in newly synthesized bacteriochlorophyll a-protein complexes from Rhodopseudomonas sphaeroides, Photochem. Photobiol. 30: 313 (1979).PubMedCrossRefGoogle Scholar
  13. 13.
    C. N. Hunter, H. J. M. Kramer, and R. van Grondelle, Linear dichroism and fluorescence emission of antenna complexes during photosynthetic unit assembly in Rhodopseudomonas sphaeroides, Biochim. Biophys. Acta. 807: 44 (1985).CrossRefGoogle Scholar
  14. 14.
    P. A. Reilly and R. A. Niederman, Role of apparent membrane growth initiation sites during photosynthetic membrane development in synchronously dividing Rhodopseudomonas sphaeroides, J. Bacteriol. 167: 153 (1986).PubMedGoogle Scholar
  15. 15.
    M. K. Ashby, S. A. Coomber, and C. N. Hunter, Cloning, nucleotide sequence and transfer of genes for the B800–850 light-harvesting complex of Rhodobacter sphaeroides, FEBS Lett. 213: 245 (1987).CrossRefGoogle Scholar
  16. 16.
    C. N. Hunter and R. van Grondelle, The use of mutants to investigate the organisation of the photosynthetic apparatus of Rhodobacter sphaeroides, in: “Photosynthetic Light-Harvesting Systems,” H. Scheer and P. Schneider, eds., p. 247, Walter de Gruyter, New York (1988).Google Scholar
  17. 17.
    C. N. Hunter, R. van Grondelle, and R. J. van Dorssen, The construction and properties of a mutant of Rhodobacter sphaeroides with the LH1 antenna as the sole pigment protein, Biochim. Biophys. Acta 973: 383 (1989).CrossRefGoogle Scholar
  18. 18.
    R. J. van Dorssen, C. N. Hunter, R. van Grondelle, A. H. Korenhof, and J. Amesz, Spectroscopic properties of antenna complexes of Rhodobacter sphaeroides in vivo, Biochim. Biophys. Acta 932: 179 (1988).CrossRefGoogle Scholar
  19. 19.
    M. Vos, R. J. van Dorssen, J. Amesz, R. van Grondelle, and C. N. Hunter, The organization of the photosynthetic apparatus of Rhodobacter sphaeroides: studies of antenna mutants using singlet-singlet quenching, Biochim. Biophys. Acta 933: 132 (1988).CrossRefGoogle Scholar
  20. 20.
    C. N. Hunter, J. D. Pennoyer, J. N. Sturgis, D. Farrelly, and R. A. Niederman, Oligomerization states and associations of light-harvesting pigment-protein complexes of Rhodobacter sphaeroides as analyzed by lithium dodecyl sulfate-polyacrylamide gel electrophoresis, Biochemistry 27: 3459 (1988).CrossRefGoogle Scholar
  21. 21.
    J. N. Sturgis, C. N. Hunter, and R. A. Niederman, In preparation.Google Scholar
  22. 22.
    D. C. Youvan, J. E. Hearst, and B. L. Marrs, Isolation and characterization of enhanced fluorescence mutants of Rhodopseudomonas capsulata, J. Bacteriol. 154: 748 (1983).PubMedGoogle Scholar
  23. 23.
    R. E. Sockett, T. J. Donohue, A. R. Varga, and S. Kaplan, Control of photosynthetic membrane assembly in Rhodobacter sphaeroides mediated by puhA and flanking sequences, J. Bacteriol. 171: 436 (1989).PubMedGoogle Scholar
  24. 24.
    J. K. Lee, P. J. Kiley, and S. Kaplan, Posttranscriptional control of puc operon expression of B800–850 light-harvesting complex formation in Rhodobacter sphaeroides, J. Bacteriol. 171: 3391 (1989).PubMedGoogle Scholar
  25. 25.
    P. J. Kiley, A. Varga, and S. Kaplan, Physiological and structural analysis of light-harvesting mutants of Rhodobacter sphaeroides, J. Bacteriol. 170: 1103 (1988).PubMedGoogle Scholar
  26. 26.
    R. van Grondelle, C. N. Hunter, J. G. C Bakker, and H. J. M. Kramer, Size and structure of antenna complexes of photosynthetic bacteria as studied by singlet-singlet quenching of the bacteriochlorophyll fluorescence yield, Biochim. Biophys. Acta 723: 30 (1983).CrossRefGoogle Scholar
  27. 27.
    J. N. Sturgis and R. A. Niederman, Role of B800–850 light-harvesting pigment-protein complex in the morphogenesis of Rhodobacter sphaeroides membranes, in:“Proc. VIII Internat. Congr. Photosynth.”, In press.Google Scholar
  28. 28.
    W. H. J. Westerhuis, M. Vos, R. J. van Dorssen, R. van Grondelle, J. Amesz and R. A. Niederman, Associations of pigment-protein complexes in phospholipid-enriched bacterial photosynthetic membranes, in:“Biological Role of Plant Lipids,” P. A. Biacs; K. Gruiz, and T. Kremmer, eds., p. 227, Plenum, New York.Google Scholar
  29. 29.
    J. T. Chory, T. J. Donohue, A. R. Varga, L. A. Staehelin, and S. Kaplan, Induction of the photosynthetic membranes of Rhodopseudomonas sphaeroides: biochemical and morphological studies, J. Bacteriol. 159: 540 (1984).PubMedGoogle Scholar
  30. 30.
    M. Vos, R. van Grondelle, F. W. van der Kooij, D. van de Poll, J. Amesz, and L. N. M. Duysens, Singlet-singlet annihilation at low temperatures in the antenna of purple bacteria, Biochim. Biophys. Acta 850: 501 (1986).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • James N. Sturgis
    • 1
  • C. Neil Hunter
    • 2
  • Robert A. Niederman
    • 1
  1. 1.Department of Molecular Biology and BiochemistryRutgers UniversityPiscatawayUSA
  2. 2.Department of Molecular Biology and Biotechnology, Biochemistry SectionUniversity of SheffieldSheffieldUK

Personalised recommendations