Advertisement

Considerations on the Structural Principles of the Antenna Complexes of Phototrophic Bacteria

  • H. Zuber
Part of the FEMS Symposium book series (FEMSS)

Abstract

The various photosynthetic organisms show a multiplicity of different antenna structures, antenna complexes, types of pigments and polypeptides. This is mainly due to the diversity and selectivity of environmental conditions, particularly light, and metabolic restrictions which dominated the evolution of antenna structures. Metabolic and structural constraints also determined and coordinated evolution of pigments and antenna polypeptides. Because the antennae are part of or are linked to highly differentiated membranes, the structure and diversity of the antenna polypeptides adjusted structurally to the various types of lipid membranes. At the present time we can distinguish on this basis between 1.) the antennae of anoxygenic and oxygenic organisms, living in the spectral range above and below 700 nm, respectively, and 2.) antenna systems within and outside the membrane (cytoplasmic-, intracytoplasmic-, thylakoid-membrane). Thus the light-harvesting antennae, which evolved parallel with the reaction center from possibly related precursor molecules, represent not only one but many types of antenna molecules. We may assume, however, that in the multiplicity of antenna structures certain principles exist, valid in all antenna systems for the physical processes of light energy absorption and the energy transfer to the reaction center. In this respect it is generally assumed that all photons absorbed by pigment molecules form mobile electronic excited singlet (S1) states (excitons) [1–4].

Keywords

Reaction Center Core Complex Purple Bacterium Phototrophic Bacterium Antenna Complex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Knox, R.S, in: Topics in Photosynthesis, Vol. II, Barber, J., ed., Elsevier, Amsterdam, 55, (1977).Google Scholar
  2. [2]
    Pearlstein, R.M., in: Phtosoynthesis: Energy conversion by plants and bacteria, Govijndjee, ed., Vol. 1, Academic Press, New York, 293 (1982).Google Scholar
  3. [3]
    Pearlstein, R.M., in: Antennas and Reaction Centers of Photosynthetic Bacteria, Chemical, Physics Series, 42, MichelBeyerle, M.E., ed., Springer, Berlin, Heidelberg, 53 (1985).CrossRefGoogle Scholar
  4. [4]
    Pearlstein, R.M., in: Antennas and Reaction Centers of Photosynthetic Bacteria, Chemical Physics Series, 42, MichelBeyerle, M.E., ed., Springer, Berlin, Heidelberg, 53 (1985).CrossRefGoogle Scholar
  5. [5]
    Borisov, A.Y. and Zuber, H., paper in preparation.Google Scholar
  6. [6]
    Zuber, H., Photochem. Photobiol., 42: 821 (1985).CrossRefGoogle Scholar
  7. [7]
    Zuber, H., in: The Light Reactions, Barber, J., ed., Elsevier Science Publ., 197 (1987).Google Scholar
  8. [8]
    Zuber, H., Brunisholz, R., and Sidler, W., in: Photosynthesis, Amesz, J., ed., Elsevier Science Publ., 233 (1987).CrossRefGoogle Scholar
  9. [9]
    Cogdell, R.J. and Valentine, J., Yearly Review, Bacterial Photosynthesis, Photchem, Photobiol., 769 (1983).Google Scholar
  10. [10]
    Drews, G., in: Membranes of Phototrophic Bacteria, Microbiol. Rev., 59, (1985).Google Scholar
  11. [11]
    Glazer, A.N., Annu. Rev. Biochem., 52: 152 (1983).CrossRefGoogle Scholar
  12. [12]
    Glazer, A.N., Annu. Rev. Biophys. Biophys., Chem., 14: 47 (1985).CrossRefGoogle Scholar
  13. [13]
    Brunisholz, R.A, Workshop on structure, function and formation of membrane-bound complexes in Phototrophic Bacteria, Freiburg, FRG, I-P-3, 17 (1987).Google Scholar
  14. [14]
    Brunisholz, R.A. and Zuber, H., in: Photosynthetic Light-Harvesting Systems, Scheer, H. and Schneider, S., eds., Walter de Gruyter & Co., Berlin, New York, 103 (1988).Google Scholar
  15. [15]
    Weite, W., Wacker, T., Leis, M., Kreutz, W., Shiozawa, J., Gad’on, N., and Drews, G., FEBS Letters, 182: 260 (1985).CrossRefGoogle Scholar
  16. [16]
    Wacker, T., Gad’on, N., Becker, A., Maentele, W., Kreutz, W., Drews, G., and Welte, W., FEBS Letters 197: 267 (1986).CrossRefGoogle Scholar
  17. [17]
    Cogdell, R.J., Woolley, K., MacKenzie, R.C., Lindsay, J.G., Michel, H., Dobler, J., and Zinth, W., in: Antennas and Reaction Centers of Photosynthetic Bacteria, Michel-Beyerle, M.E., ed., Springer, Berlin, Heidelberg, 85 (1985).CrossRefGoogle Scholar
  18. [18]
    Wacker, T., Gad’on, N., Steck, K., Welte, W., and Drews, G., Biochim. Biophys. Acta, 933: 299 (1988).CrossRefGoogle Scholar
  19. [19]
    Dawkins, D.J., Ferguson, L.A., and Cogdell, R., in: Photosynthetic Light-Harvesting Systems, Scheer, H. and Schneider, S., eds., Walter de Gruyer, Berlin, New York, 115 (1988).Google Scholar
  20. [20]
    Hunter, C.N., Pennoyer, J.D., Sturgis, J.N., Farrelly, D., and Niedermann, A., Biochemistry 27: 3459 (1988).CrossRefGoogle Scholar
  21. [21]
    Miller, J.F., Hinchingeri, P.S., Parkes-Loach, P.M., Callahan, J.R., Sprinkle, J.R., Roccobono, J.R., and Loach, P.A., Biochemistry, 26: 5055, (1987).PubMedCrossRefGoogle Scholar
  22. [22]
    Ghosh, R., Hauser, H., and Bachofen, R., Biochemistry, 27: 1004 (1988).CrossRefGoogle Scholar
  23. [23]
    Peters, J., Welte, W., and Drews, G., FEBS Letters, 171: 267 (1984).CrossRefGoogle Scholar
  24. [24]
    Peters, J., Takemoto, J., and Drews, G., Biochemistry, 22: 5660 (1983).CrossRefGoogle Scholar
  25. [25]
    Peters, J. and Drews, G., Eur. J. Cell Biol., 29: 115 (1983).PubMedGoogle Scholar
  26. [26]
    Ludwig, F.R. and Jay, F.A., Eur. J. Biochem, 151: 83, (1985).PubMedCrossRefGoogle Scholar
  27. [27]
    Breton, J. and Nabedryk, E., in: Light Reactions, Barber, J., ed., Elsevier Science Publ., 159 (1987).Google Scholar
  28. [28]
    Kramer, H.J.M., van Grondelle, R., Hunter, C.N., Westerhuis, W.H.J., and Amesz, J., Biochim. Biophys. Acta, 765: 156 (1984).CrossRefGoogle Scholar
  29. [29]
    Van Grondelle, R., Hunter, C.N., Bakker, J.G.C., and Kramer, H.J.M., Biochim. Biophys. Acta, 723: 30 (1983).CrossRefGoogle Scholar
  30. [30]
    Hunter, C.N., Kramer, H.J.M., and van Grondelle, R., Biochim. Biophys. Acta, 807: 44 (1985).CrossRefGoogle Scholar
  31. [31]
    Van Grondelle, R., Biochim. Biophys. Acta, 811: 147 (1985).CrossRefGoogle Scholar
  32. [32]
    Vos, M., van Grondelle, R., van der Kooij, F.W., van de Poll, D., Amesz, J., and Duysens, L.N.M., Biochim. Biophys. Acta, 850: 501 (1986).CrossRefGoogle Scholar
  33. [33]
    Hunter, C.N. and van Grondelle, R., in: Photosynthetic Light-Harvesting Systems, Scheer, H. and Schneider, S., eds., Walter de Gruyter, Berlin, New York, 247 (1988).Google Scholar
  34. [34]
    Van Dorssen, R.J., Hunter, C.N., van Grondelle, R., Kovenhof, A.H., and Amesz, J., Biochim. Biophys. Acta, 932: 179 (1988).CrossRefGoogle Scholar
  35. [35]
    Engelhardt, H., Baumeister, W. and Saxton, W.O., Arch. Microbiol., 135: 169 (1983).CrossRefGoogle Scholar
  36. [36]
    Stark, W., Kühlbrandt, K., Wildhaber, I., Wehrli, E., and Mühlethalter, K., The EMBO J., 3/4: 777 (1984).Google Scholar
  37. [37]
    Jay, F., Lambillotte, M., Stark, E., and Mühlethaler, K., The EMBO J., 3/4: 773 (1984).Google Scholar
  38. [38]
    Stark, W., Jay, F., and Miihlethaler, K., Arch. Microbiol., 146: 130, (1986).CrossRefGoogle Scholar
  39. [39]
    Cogdell, R.J., Papiz, M.Z., Woolley, K.J., Ferguson, L.A. Wightman, P., and Lindsay, J.G., Abstracts VI Symposium on Photosynthetic Prokaryotes, Noordwijkerhout, The Netherlands, 59 (1988).Google Scholar
  40. [40]
    Brunisholz, R.A., Bissig, I., Wagner-Huber, R., Frank, G., Suter, F., Niederer, E., and Zuber, H., Z. Naturforschung, 44c: 132 (1989).Google Scholar
  41. [41]
    Brunisholz, R.A., Suter, F., and Zuber, H., Eur. J. Biochem, submitted (1989).Google Scholar
  42. [42]
    Bissig, I., Brunisholz, R.A., Suter, F., Cogdell, R.J., and Zuber, H., Z. Naturforschung 43c: 77 (1988).Google Scholar
  43. [43]
    Brunisholz, R.A., Bissig, I., Niederer, E., Suter, F., and Zuber, H., Photosynthesis Research, submitted (1989)Google Scholar
  44. [44]
    Brunisholz, R.A., Evans, M.B., Cogedell, R.J., Frank, G., and Zuber, H., FEBS Letters, submitted (1989).Google Scholar
  45. [45]
    Wagner-Huber, R., Brunisholz, R.A., Bissig, I., Frank, G., and Zuber, H., FEBS Letters 233: 7 (1988).CrossRefGoogle Scholar
  46. [46]
    Bissig, I., Wagner-Huber, R., Brunisholz, R.A., Frank, G., and Zuber, H., Symposium on Molecular Biology of Membrane-Bound Complexes in Phototrophic Bacteria, Freiburg, FRG (1989)Google Scholar
  47. [47]
    Bissig, I, Thesis # 8945, Eidgenössische Technische Hochschule, Zürich (1989).Google Scholar
  48. [48]
    Tadros, M.H. and Waterkamp, K., The EMBO J., 8/5: 1303 (1989).Google Scholar
  49. [49]
    Coruzzi, G., Broglie, R., Cashmore, A., and Chua, N.H., J. Biol. Chem., 258: 1399 (1983).PubMedGoogle Scholar
  50. [50]
    Dunsmuir, P., Smith, S.M., and Bedbrook, J., J. Mol. Appl. Genet, 2: 285 (1983).PubMedGoogle Scholar
  51. [51]
    Karlin-Neumann, G.A., Kohorn, B.D., Thornber, J.P., and Tobin, E.M., J. Mol. Appl. Genet, 3: 45 (1985).PubMedGoogle Scholar
  52. [52]
    Stayton, M.M., Brosio, P., and Dunsmuir, P., Plant Mol. Biol., 10: 127 (1987).CrossRefGoogle Scholar
  53. [53]
    Hoffman, N.E., Pichersky, E., Malik, V.S., Castresana, C., Ko, K., Darr, S.C., and Cashmore, A.R., Proc. Natl. Acad. Sci. USA, 84: 8844 (1987).PubMedCrossRefGoogle Scholar
  54. [54]
    Bürgi, R., Suter, F., and Zuber, H., Biochim. Biophys. Acta, 890: 346 (1987).CrossRefGoogle Scholar
  55. [55]
    Zuber, H., Suter, F., Sidler, W, and Brunisholz R., paper in preparation.Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • H. Zuber
    • 1
  1. 1.Institut für Molekularbiologie und BiophysikEidg. Technische Hochschule, ETH-HönggerbergZürichSwitzerland

Personalised recommendations