Genetics of Cytochromes C2 and BC1 Complex of Photosynthetic Bacteria

  • Fevzi Daldal
Part of the FEMS Symposium book series (FEMSS)


Photosynthetic bacteria are endowed with a multitude of b- and c-type cytochromes that are important components of cellular energy transduction pathways operational during the metabolism of various substances1. They are often soluble and located in the periplasmic space, or are integral membrane proteins spanning the lipid bilayer. Soluble species may also associate, under certain conditions, with various membrane-embedded complexes. The presence or absence of a given set of cytochromes, as well as their relative amounts, although barely studied in many instances, appear well regulated. Different growth conditions induce, or preclude, the synthesis of various cytochromes in function of the cellular needs2. Expectedly, the metabolic pathways and the components involved are complex and numerous, but their knowledge is essential for a complete understanding of the biology of the cell. In the past, biochemical studies of cytochromes have been extremely fruitful, allowing the determination of their structural and functional properties1,2. In more recent years, these studies have also been complemented by molecular biological approaches directed at the analysis of the corresponding DNA structures which contain the information responsible for their structure and their regulated synthesis.


Photosynthetic Bacterium Photosynthetic Growth Photochemical Reaction Center High Potential Heme Quinol Oxidation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bartsch, R. G. 1978. In The photosynthetic bacteria (Clayton, R. and Sistrom, W., Eds) pp.249-279. Plenum Press, New York.Google Scholar
  2. 2.
    Meyer, T. E., and M. A. Cusanovich. 1989. Biochim. Biophys. Acta. 975: 1-28.Google Scholar
  3. 3.
    La Monica, R. F. and B. L. Mans. 1976. Biochim. Biophys. Acta. 423: 43143 9.Google Scholar
  4. 4.
    Daldal, F., S. Cheng, J. Applebaum, E. Davidson and R. C. Prince. 19 8 6. Proc. Natl. Acad. Sci. 83: 2012 - 2016.Google Scholar
  5. 5.
    Prince, R. C. and F. Daldal. 1987. Biochim. Biophys. Acta. 894: 370-378.Google Scholar
  6. 6.
    Prince, R. C., E. Davidson, C. E. Haith and F. Daldal. 1986. Biochemistry 25: 5208 - 5214.CrossRefGoogle Scholar
  7. 7.
    Donohue, T. J., A. G. McEwan and S. Kaplan. 1986. J. Bacteriol. 168: 962972.Google Scholar
  8. 8.
    Donohue, T. J., A. G. McEwan, S. van Doren, A. R. Crofts and S. Kaplan. 1988. Biochemistry 27: 1918 - 1925.PubMedCrossRefGoogle Scholar
  9. 9.
    Fitch, J., V. Carnac, T. E. Meyer, M. A. Cusanovich, G. Tollin, J. van Beumen, M. A. Rott and T. J. Donohue. 1989. Arch. Biochem. Biophys. 271: 502-507.Google Scholar
  10. 10.
    Daldal, F., E. Davidson and S. Cheng. 1987. J. Mol. Biol. 195: 1-24.Google Scholar
  11. 11.
    von Jagow, G. and T. A. Link. 1986. In Methods in Enzymology (Fleischer, S. and Fleischer, B., Eds) vol. 126, pp.253-271. Academic Press.Google Scholar
  12. 12.
    Davidson, E., R. C. Prince, C. E. Haith and F. Daldal. 1989. Submitted.Google Scholar
  13. 13.
    Youvan, D. C, S. Ismail and E. J. Bylina. 1985. Gene 38: 19 - 30.PubMedCrossRefGoogle Scholar
  14. 14.
    Zilsel, J., T. G. Lilbum and J. T. Beatty. 1989. FEBS Lett., in press.Google Scholar
  15. 15.
    Bylina, E. J., R. V. M. Jovine and D. C. Youvan. 1989. Bio/Technology, 7: 6974.CrossRefGoogle Scholar
  16. 16.
    Crielaard, W., N. Gabellini, K.J. Hellingwerf and W. N. Konings. 1989. Biochim. Biophys. Acta, 974: 211-218.Google Scholar
  17. 17.
    Ljungdahl, P. 0., J./ D. Pennoyer, D. E. Robertson and B. L. Trumpower. 1987. Biochim. Biophys. Acta, 891: 227-241.Google Scholar
  18. 18.
    Gabellini, N. and W. Sebald. 1986. Eur. J. Biochem. 154: 569 - 579.PubMedCrossRefGoogle Scholar
  19. 19.
    Kurowski, B. and B. Ludwig. 1987. J. Biol. Chem. 262: 13805-13811.Google Scholar
  20. 20.
    Thony-Meyer, L., D. Stax and H. Hennecke. 1989. Cell, 57: 683 - 697.PubMedCrossRefGoogle Scholar
  21. 21.
    Kallas, T., S. Spiller and R. Malkin. 1988. Proc. Natl. Acad. Sci. 85: 5794-5798.Google Scholar
  22. 22.
    Daldal, F. 1989. In preparation.Google Scholar
  23. 23.
    Daldal, F., M. K. Tokito, E. Davidson and M. Faham. 1989. Submitted.Google Scholar
  24. 24.
    Robertson, D. E. and P. L. Dutton. 1988. Biochim. Biophys. Acta, 935: 273-291.Google Scholar
  25. 25.
    Subik, J. 1975. FEBS Lett. 237: 31 - 34.Google Scholar
  26. 26.
    Lang, B., G. Burger, K. Wolf, W. Banlow and F. Kaudewitz. 1975. Mol. Gen. Genet. 137: 353-363.Google Scholar
  27. 27.
    Howell, N., A. Bantel and P. Huang. 1983. Somatic Cell Genetics, 9: 721 - 743.PubMedCrossRefGoogle Scholar
  28. 28.
    Daldal, F., E. Davidson, S. Cheng, B. Naiman and S. Rook. 1986. In Microbila Energy Transduction (Youvan, D. C. and Daldal, F., eds). pp. 113 - 119. Cold Spring Harbor Press, Cold Spring Harbor.Google Scholar
  29. 29.
    di Rago, J. P., J-Y Coppee and A-M Colson. 1989. J. Biol. Chem. in press.Google Scholar
  30. 30.
    Howell, N. and K. Gilbert. 1988. J. Mol. Biol. 203: 607-618.Google Scholar
  31. 31.
    Brandt, U., H. Schagger and G. von Jagow. 1988. Eur. J. Biochem. 173: 499-506.Google Scholar
  32. 32.
    di Rago, J. P. and A-M Colson. 1988. J. Biol. Chem. 263: 12564-12570.Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Fevzi Daldal
    • 1
  1. 1.Department of Biology, Plant Science InstituteUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations