Skip to main content

The Equations of Motion Method: An Approach to the Dynamical Properties of Atoms and Molecules

  • Chapter

Part of the Modern Theoretical Chemistry book series (MTC,volume 3)

Abstract

This chapter is concerned with the equations of motion method as a many-body approach to the dynamical properties of atoms and molecules. In a wide range of spectroscopic experiments one is primarily concerned with just dynamical properties. These dynamical properties include excitation energies and oscillator strengths in optical spectroscopy, the dynamic or frequency-dependent polarizability in light scattering studies, photoionization cross sections, and elastic and inelastic electron scattering cross sections. These experiments probe the response of an atom or molecule to some external perturbation. If one is concerned with these properties one should develop a formalism which aims directly at these properties. Of course this idea is not novel. For example, one might try to calculate the appropriate Green’s functions whose poles, and residues at these poles, are directly the excitation energies and transitions densities, respectively. One could also attempt to solve the time-dependent Schrödinger equation directly, e.g., in the time-dependent Hartree—Fock approximation. The approach to these dynamical properties of atoms and molecules which we will discuss is based on the equations of motion formalism as suggested by Rowe.(1) This is a very practical formalism based on the equations of motion for excitation operators defined as operators that convert one stationary state of a system into another state.

Keywords

  • Excitation Energy
  • Oscillator Strength
  • Electron Affinity
  • Internuclear Distance
  • Potential Energy Curve

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4757-0887-5_9
  • Chapter length: 48 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-1-4757-0887-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   139.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. J. Rowe, Equations-of-motion method and the extended shell model, Rev. Mod. Phys. 40, 153–166 (1968).

    CrossRef  Google Scholar 

  2. T. Shibuya and V. McKoy, Higher random phase approximation as an approximation to the equations of motion, Phys. Rev. A 2, 2208–2218 (1970).

    CrossRef  Google Scholar 

  3. T. Shibuya, J. Rose, and V. McKoy, Equations-of-motion method including renormalization and double-excitation mixing, J. Chem. Phys. 58, 500–507 (1973).

    CAS  CrossRef  Google Scholar 

  4. J. Rose, T. Shibuya, and V. McKoy, Application of the equations-of-motion method to the excited states of N2, CO, and C2H4, J. Chem. Phys. 58, 74–83 (1973).

    CAS  CrossRef  Google Scholar 

  5. C. W. McCurdy, Jr. and V. McKoy, Equations of motion method: Inelastic electron scattering for helium and CO2 in the Born approximation, J. Chem. Phys. 61, 2820–2826 (1974).

    CAS  CrossRef  Google Scholar 

  6. D. L. Yeager and V. McKoy, Equations of motion method: Excitation energies and intensities of formaldehyde, J. Chem. Phys. 60, 2714–2716 (1974).

    CAS  CrossRef  Google Scholar 

  7. J. Rose, T. Shibuya, and V. McKoy, Electronic excitations of benzene from the equations of motion method, J. Chem. Phys. 60, 2700–2702 (1974).

    CAS  CrossRef  Google Scholar 

  8. D. J. Rowe, General variational equations for stationary and time-dependent states, Nucl. Phys. A 107, 99–105 (1968).

    CAS  CrossRef  Google Scholar 

  9. D. J. Rowe, Nuclear Collective Motion, Models, and Theory, Methuen and Co. Ltd., London (1970).

    Google Scholar 

  10. See, for example, A. L. Fetter and J. D. Walecka, Quantum Theory of Many-Particle Systems, McGraw-Hill, New York (1971).

    Google Scholar 

  11. P. H. S. Martin, W. H. Henneker, and V. McKoy, Dipole properties of atoms and molecules in the random phase approximation, J. Chem. Phys. 62, 69–79 (1975).

    CAS  CrossRef  Google Scholar 

  12. D. J. Thouless, Vibrational states of nuclei in the random phase approximation, Nucl. Phys. 22, 78–95 (1961).

    CAS  CrossRef  Google Scholar 

  13. D. L. Yeager and V. McKoy, An equations of motion approach for open shell systems, J. Chem. Phys. 63, 4861 (1975).

    CAS  CrossRef  Google Scholar 

  14. W. J. Hunt, T. H. Dunning Jr., , and W. A. Goddard, The orthogonality constrained basis set expansion method for treating off-diagonal Lagrange multipliers in calculations of electronic wave functions, Chem. Phys. Lett. 3, 606–610 (1969).

    CAS  CrossRef  Google Scholar 

  15. P. Jorgensen, Electronic excitations of open-shell systems in the grand canonical and canonical time-dependent Hartree—Fock models. Applications on hydrocarbon radical ions, J. Chem. Phys. 57, 4884–4892 (1972).

    CrossRef  Google Scholar 

  16. L. Armstrong Jr., An open-shell random phase approximation, J. Phys. B 7, 2320–2331 (1974).

    CAS  CrossRef  Google Scholar 

  17. W. Coughran, J. Rose, T. Shibuya, and V. McKoy, Equations of motion method: Potential energy curves for N2, CO, and C2H4, J. Chem. Phys. 58, 2699–2709 (1973).

    CrossRef  Google Scholar 

  18. K. Dressler, The lowest valence and Rydberg states in the dipole-allowed absorption spectrum of nitrogen. A survey of their interactions. Can. J. Phys. 47, 547–561 (1969).

    CAS  CrossRef  Google Scholar 

  19. H. Lefebvre-Brion, Theoretical study of homogeneous perturbations. II. Least-squares fitting method to obtain “deperturbed” crossing Morse curves. Application to the perturbed 1Σ states of N2, Can. J. Phys. 47, 541–546 (1969).

    CAS  CrossRef  Google Scholar 

  20. E. Lassettre and A. Skerbele, Absolute generalized oscillator strengths for four electronic transitions in carbon monoxide, J. Chem. Phys. 54, 1597–1607 (1971).

    CAS  CrossRef  Google Scholar 

  21. K. N. Klump and E. N. Lassettre, Relative vibrational intensities for the B 1 Σ + F-X 1Σ+ transition in carbon monoxide, J. Chem. Phys. 60, 4830–4832 (1974).

    CAS  CrossRef  Google Scholar 

  22. The basis set used in these calculations is different from that of Ref. 4. See Ref. 15 for details.

    Google Scholar 

  23. G. Herzberg, T. Hugo, S. Tilford, and J. Simmons, Rotational analysis of the forbidden d 3 i F-X 1Σ+ absorption bands of carbon monoxide, Can. J. Phys. 48, 3004–3015 (1970).

    CAS  CrossRef  Google Scholar 

  24. P. H. Krupenie and S. Weiss, Potential energy curves for CO and CO+, J. Chem. Phys. 43, 1529–1534 (1965).

    CAS  CrossRef  Google Scholar 

  25. V. D. Meyer, A. Skerbele, and E. N. Lassettre, Intensity distribution in the electron-impact spectrum of carbon monoxide at high-resolution and small scattering angles, J. Chem. Phys. 43, 805–816 (1965).

    CAS  CrossRef  Google Scholar 

  26. M. J. Mumma, E. J. Stone, and E. C. Zipf, Excitation of the CO fourth positive band system by electron impact on carbon monoxide and carbon dioxide, J. Chem. Phys. 54, 2627–2634 (1971).

    CAS  CrossRef  Google Scholar 

  27. P. G. Wilkinson, Absorption spectra of ethylene and ethylene-d4 in the vacuum ultraviolet. II. Can. J. Phys. 34, 643–652 (1956).

    CAS  CrossRef  Google Scholar 

  28. C. F. Bender, T. H. Dunning Jr., , H. F. Schaefer III, W. A. Goddard III, and W. J. Hunt, Multiconfiguration wavefunctions for the lowest (iπππ*) excited states of ethylene, Chem. Phys. Lett. 15, 171–178 (1972).

    CAS  CrossRef  Google Scholar 

  29. R. J. Buenker and S. D. Peyerimhofif, All-valence-electron CM calculations for the characterization of the 1(iπ, iT*) states of ethylene, in press.

    Google Scholar 

  30. M. Inokuti, Inelastic collisions of fast charged particles with atoms and molecules. The Bethe theory revisited, Rev. Mod. Phys. 43, 297–347 (1971).

    CAS  CrossRef  Google Scholar 

  31. E. N. Lassettre and J. C. Shiloff, Collision cross-section study of CO2, J. Chem. Phys. 43, 560–571 (1965).

    CAS  CrossRef  Google Scholar 

  32. J. W. Rabalais, J. M. McDonald, V. Scherr, and S. P. McGlynn, Electronic spectroscopy of isoelectronic molecules. II. Linear triatomic groupings containing sixteen valence electrons, Chem. Rev. 71, 73–108 (1971).

    CrossRef  Google Scholar 

  33. For the results of extensive CI calculations, see N. W. Winter, C. F. Bender, and W. A. Goddard III, Theoretical assignments of the low-lying electronic states of carbon dioxide, Chem. Phys. Lett. 20, 489–492 (1973).

    CAS  CrossRef  Google Scholar 

  34. M. Krauss, S. R. Mielczarek, D. Neumann, and C. E. Kuyatt, Mechanism for production of the fourth positive band system of CO by electron impact on CO2, J. Geophys. Res. 76, 3733–3737 (1971).

    CAS  CrossRef  Google Scholar 

  35. G. M. Lawrence, Photodissociation of CO2 to produce CO(a3II), J. Chem. Phys. 56, 3435–3442 (1972).

    CAS  CrossRef  Google Scholar 

  36. V. J. Hammond and W. C. Price, Oscillator strengths of the vacuum ultraviolet absorption bands of benzene and ethylene, Trans. Faraday Soc. 51, 605–610 (1955).

    CAS  CrossRef  Google Scholar 

  37. See, for example, E. Clementi and A. D. McLean, Atomic negative ions, Phys. Rev. 133, A419-A423 (1964).

    CrossRef  Google Scholar 

  38. D. L. Yeager, Ph.D. candidacy examination report, California Institute of Technology, March 1972.

    Google Scholar 

  39. J. Simons and W. D. Smith, Theory of electron affinities of small molecules, J. Chem. Phys. 58, 4899–4907 (1973).

    CAS  CrossRef  Google Scholar 

  40. L. S. Cederbaum, G. Hohlneicher, and W. V. Niessen, Improved calculations of ionization potentials of closed-shell molecules, Mol. Phys. 26, 1405–1424 (1973).

    CAS  CrossRef  Google Scholar 

  41. G. D. Purvis and Y. Ohπn, Atomic and molecular electronic spectra and properties from the electron propagator, J. Chem. Phys. 60, 4063–4069 (1974).

    CAS  CrossRef  Google Scholar 

  42. D. L. Yeager, Ph.D. thesis, California Institute of Technology (February 1975).

    Google Scholar 

  43. T. Chen, W. Smith and J. Simons, Theoretical studies of molecular ions. Vertical ionization potentials of the nitrogen molecule, Chem. Phys. Lett. 26, 296–300 (1974).

    CAS  CrossRef  Google Scholar 

  44. W. Smith, T. Chen, and J. Simons, Theoretical studies of molecular ions. Vertical ionization potentials of hydrogen fluoride, J. Chem. Phys. 61, 2670–2674 (1974).

    CAS  CrossRef  Google Scholar 

  45. W. D. Smith, T. Chen, and J. Simons, Theoretical studies of molecular ions. Vertical detachment energy of OH-, Chem. Phys. Lett. 27, 499–502 (1974).

    CAS  CrossRef  Google Scholar 

  46. J. T. Broad and W. P. Reinhardt,Calculation of photoionization cross sections using L2 basis sets, J. Chem. Phys. 60, 2182–2183 (1974).

    CAS  CrossRef  Google Scholar 

  47. T. N. Rescigno, C. W. McCurdy, and V. McKoy, Calculation of helium photoionization in the random phase approximation using square-integrable basis functions, Phys. Rev. A 9, 2409–2412 (1974).

    CAS  CrossRef  Google Scholar 

  48. P. H. S. Martin, T. N. Rescigno, V. McKoy, and W. H. Henneker, Photoionization cross sections for H2 in the random phase approximation with a square-integrable basis, Chem. Phys. Lett. 29, 496–501 (1974).

    CAS  CrossRef  Google Scholar 

  49. P. W. Langhoff, Stieltjes imaging of atomic and molecular photoabsorption profiles, Chem. Phys. lett. 22, 60–64 (1973).

    CAS  CrossRef  Google Scholar 

  50. P. W. Langhoff and C. T. Corcoran, Stieltjes imaging of photoabsorption and dispersion profiles, J. Chem. Phys. 61, 146–159 (1974).

    CAS  CrossRef  Google Scholar 

  51. A. Dalgarno, H. Doyle, and M. Oppenheimer, Calculation of photoabsorption processes in helium, Phys. Rev. Lett. 29, 1051–1052 (1972).

    CAS  CrossRef  Google Scholar 

  52. H. Doyle, M. Oppenheimer, and A. Dalgarno, Bound-state expansion method for calculating resonance and nonresonance contributions to continuum processes: Theoretical development and application to the photoionization of helium, Phys Rev. A 11, 909 (1975).

    CAS  CrossRef  Google Scholar 

  53. M. Ya. Amus’ya, N. A. Cherepkov, and L. V. Chernysheva, Cross sections for the photo-ionization of noble-gas atoms with allowance for multielectron correlations, Soy. Phys.-JETP 33, 90–96 (1971).

    Google Scholar 

  54. M. J. Jamieson, Time-dependent Hartree-Fock theory for atoms, Int. J. Quantum Chem. S4, 103–115 (1971).

    Google Scholar 

  55. P. L. Altick and A. E. Glassgold, Correlation effects in atomic structure using the random phase approximation, Phys. Rev. 133, A632-A646 (1964).

    CAS  CrossRef  Google Scholar 

  56. P. W. Langhoff and M. Karplus, Padé approximants to the normal dispersion expansion of dynamic polarizabilities, J. Chem. Phys. 52, 1435–1449 (1970).

    CAS  CrossRef  Google Scholar 

  57. U. Fano and J. W. Cooper, Spectral distribution of atomic oscillator strengths, Rev. Mod. Phys. 40, 441–507 (1968).

    CAS  CrossRef  Google Scholar 

  58. The quadrature-like approximation implicit in the use of an L 2 -basis set has been examined in the context of Fredholm scattering calculations. See E. J. Heller, T. N. Rescigno, and W. P. Reinhardt, Extraction of accurate scattering information from Fredholm determinants calculated in an L2 basis: A Chebyschev discretization of the continuum, Phys. Rev. A 8, 2946–2951 (1973).

    CAS  CrossRef  Google Scholar 

  59. L. Schlessinger and C. Schwartz, Analyticity as a useful computational tool, Phys. Rev. Lett. 16, 1173–1174 (1966).

    CrossRef  Google Scholar 

  60. L. Schlessinger, Use of analyticity in the calculation of nonrelativistic scattering amplitudes, Phys. Rev. 167, 1411–1423 (1968).

    CrossRef  Google Scholar 

  61. H. S. Wall, The Analytic Theory of Continued Fractions, Van Nostrand, Princeton, New Jersey (1968).

    Google Scholar 

  62. D. L. Yeager, M. Nascimento, and V. McKoy, Some applications of excited state-excited state transition densities, Phys. Rev. A11, 1168 (1975).

    CAS  CrossRef  Google Scholar 

  63. Y. M. Chan and A. Dalgarno, The dipole spectrum and properties of helium, Proc. Phys. Soc. London 86, 777–782 (1965).

    CAS  CrossRef  Google Scholar 

  64. J. A. R. Samson, The measurement of the photoionization cross sections of the atomic gases, in: Advances in Atomic and Molecular Physics, Vol. 2, pp. 177–261, Academic Press, New York (1966).

    Google Scholar 

  65. D. W. Norcross, Photoionization of the metastable states, J. Phys. B 4, 652–657 (1971).

    CAS  CrossRef  Google Scholar 

  66. V. L. Jacobs, Photoionization from excited states of helium, Phys. Rev. A 9, 1938–1946 (1974).

    CAS  CrossRef  Google Scholar 

  67. R. F. Stebbings, F. B. Dunning, F. K. Tittel, and R. D. Rundel, Photoionization of helium metastable atoms near threshold, Phys. Rev. Lett. 30, 815–817 (1973).

    CAS  CrossRef  Google Scholar 

  68. P. H. S. Martin, W. H. Henneker, and V. McKoy, Second-order optical properties and Van der Waals coefficients of atoms and molecules in the random phase approximation, Chem. Phys. Lett. 27, 52–56 (1974).

    CAS  CrossRef  Google Scholar 

  69. A. L. Ford and J. C. Broione, Direct-resolvent-operator computations on the hydrogen’molecule dynamic polarizability, Rayleigh, and Raman scattering, Phys. Rev. A7, 418–426 (1973).

    CrossRef  Google Scholar 

  70. L. Wolniewicz, Theoretical investigation of the transition probabilities in the hydrogen molecule, J. Chem. Phys. 51, 5002–5008 (1969).

    CAS  CrossRef  Google Scholar 

  71. G. R. Cook and P. H. Metzger, Photoionization and absorption cross sections of H2 and D, in the vacuum ultraviolet region, J. Opt. Soc. Am. 54, 968–972 (1964).

    CAS  CrossRef  Google Scholar 

  72. J. A. R. Samson and R. B. Cairns, Total absorption cross sections of H2, N2, and 02 in the region 550–200 A, J. Opt. Soc. Am. 55, 1035 (1965).

    CAS  Google Scholar 

  73. R. E. Rebbert and P. Ausloos, Ionization quantum yields and absorption coefifiicients of selected compounds at 58.4 and 73.6–74.4 nm, J. Res. Nat. Bur. Stand. Sect A. 75A, 481–485 (1971).

    CAS  Google Scholar 

  74. H. P. Kelly, The photoionization cross section for H2 from threshold to 30 eV, Chem. Phys. Lett. 20, 547–550 (1973).

    CAS  CrossRef  Google Scholar 

  75. See P. G. Burke and M. J. Seaton, Numerical solutions of the integro-differential equations of electron—atom collision theory, in : Methods of Computational Physics (B. Alder, S. Fernbach, and M. Rotenberg, eds.), Vol. 10, pp. 1–80, Academic Press, New York (1971).

    Google Scholar 

  76. A. L. Fetter and K. M. Watson, The optical model, in : Advances in Theoretical Physics (K. Brueckner, ed.), Vol. 1, pp. 115–194, Academic Press, New York (1965).

    Google Scholar 

  77. H. Feshbach, A unified theory of nuclear reactions, Ann. Phys. (N. Y.) 5, 357–390 (1958);

    CAS  CrossRef  Google Scholar 

  78. H. Feshbach, A unified theory of nuclear reactions. II, Ann. Phys. (N.Y.) 14, 287–313 (1962).

    CrossRef  Google Scholar 

  79. J. S. Bell and E. J. Squires, A formal optical model, Phys. Rev. Lett. 3, 96–97 (1959).

    CrossRef  Google Scholar 

  80. B. Schneider, H. S. Taylor, and R. Yaris, Many-body theory of the elastic scattering of electrons from atoms and molecules, Phys. Rev. A 1, 855–867 (1970).

    CAS  CrossRef  Google Scholar 

  81. B. S. Yarlagadda, Gy. Csanak, H. S. Taylor, B. Schneider, and R. Yaris, Application of many-body Green’s functions to the scattering and bound-state properties of helium, Phys. Rev. A 7, 146–154 (1973).

    CAS  CrossRef  Google Scholar 

  82. C. W. McCurdy, T. N. Rescigno, and V. McKoy, A many-body treatment of Feshbach theory applied to electron—atom and electron—molecule collisions, Phys. Rev. A 12, 406 (1975).

    CrossRef  Google Scholar 

  83. K. Dietrich and K. Hara, On the many-body theory of nuclear reactions, Nucl. Phys. A 111, 392–416 (1968).

    Google Scholar 

  84. T. N. Rescigno, C. W. McCurdy, and V. McKoy, Discrete basis set approach to nonspherical scattering, Chem. Phys. Len, 27, 401–404 (1974);

    CAS  Google Scholar 

  85. T. N. Rescigno, C. W. McCurdy, and V. McKoy, Discrete basis set approach to nonspherical scattering. II, Phys. Rev. A 10, 2240–2245 (1974).

    CrossRef  Google Scholar 

  86. T. N. Rescigno, C. W. McCurdy, and V. McKoy, Low-energy e--H2 elastic scattering cross sections using discrete basis functions, Phys. Rev. A 11, 825–829 (1975).

    CAS  CrossRef  Google Scholar 

  87. T. N. Rescigno, C. W. McCurdy, and V. McKoy, A relationship between the many-body theory of inelastic scattering and the distorted wave, J. Phys. B7, 2396–2402 (1974).

    CAS  CrossRef  Google Scholar 

  88. See for example, J. R. Taylor, Scattering Theory, p. 720, J. Wiley and Sons, New York (1972).

    Google Scholar 

  89. Gy. Csanak, H. S. Taylor, and R. Yaris, Many-body methods applied to electron scattering from atoms and molecules. II. Inelastic processes, Phys. Rev. A 3, 1322–1328 (1971).

    CrossRef  Google Scholar 

  90. L. D. Thomas, B. S. Yarlagadda, Gy. Csanak, and H. S. Taylor, Analytical and numerical procedures in the application of many-body Green’s function methods to electron—atom scattering problems, Comput. Phys. Comm. 6, 316–330 (1973)

    CAS  CrossRef  Google Scholar 

  91. L. D. Thomas, B. S. Yarlagadda, Gy. Csanak, and H. S. Taylor The application of first order many-body theory to the calculation of differential and integral cross sections for the electron impact excitation of the 21S, 21P, 23S, 23P states of helium, J. Phys. B 7, 1719–1733 (1974).

    CAS  CrossRef  Google Scholar 

  92. T. N. Rescigno, C. W. McCurdy, and V. McKoy, Excitation of the b 3Σu state of H2 by low energy electron impact in the distorted wave approximation (in preparation).

    Google Scholar 

  93. J. C. Tully and R. S. Berry, Elastic scattering of low energy electrons by the hydrogen molecule, J. Chem. Phys.51, 2056–2075 (1969).

    CAS  CrossRef  Google Scholar 

  94. B. Schneider, Inelastic scattering of high-energy electrons from atoms: The helium atom, Phys. Rev. A 2, 1873–1877 (1970).

    CrossRef  Google Scholar 

  95. A. Szabo and N. S. Ostlund, Generalized oscillator strengths for the lowest H F- Σ transitions in CO and N2, Chem. Phys. Lett. 17, 163–166 (1972).

    CAS  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1977 Springer Science+Business Media New York

About this chapter

Cite this chapter

McCurdy, C.W., Rescigno, T.N., Yeager, D.L., McKoy, V. (1977). The Equations of Motion Method: An Approach to the Dynamical Properties of Atoms and Molecules. In: Schaefer, H.F. (eds) Methods of Electronic Structure Theory. Modern Theoretical Chemistry, vol 3. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0887-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0887-5_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0889-9

  • Online ISBN: 978-1-4757-0887-5

  • eBook Packages: Springer Book Archive