Advertisement

The Method of Configuration Interaction

  • Isaiah Shavitt
Part of the Modern Theoretical Chemistry book series (MTC, volume 3)

Abstract

As the scope of quantum chemistry broadened from the consideration of stable molecules near equilibrium to encompass potential curves and surfaces, transition states, radicals, ions, and excited states, the shortcomings of the Hartree— Fock (HF) approximation for the description of the electronic structure of molecular systems became increasingly evident. The energy error of the restricted HF wave function, i.e., the difference between the HF limit energy (which is the limit approached by restricted self-consistent field calculations as the basis set approaches completeness) and the exact solution of the nonrelativistic Schrodinger equation, has been termed the correlation energy.(1) It reflects the fact that the HF Hamiltonian contains the average, rather than instantaneous, interelectron potential, and thus neglects the correlation between the motions of the electrons.

Keywords

Configuration Interaction Slater Determinant Natural Orbital Spin Function Configuration Interaction Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P.-O. Löwdin, Adv. Chem. Phys. 2, 207 (1959).Google Scholar
  2. 2.
    H. F. Schaefer III, The Electronic Structure of Atoms and Molecules. A Survey of Rigorous Quantum Mechanical Results, Addison-Wesley, Reading, Massachusetts (1972).Google Scholar
  3. 3.
    J. C. Slater, Phys. Rev. 35, 509 (1930).Google Scholar
  4. 4.
    O. Sinanoglu, Proc. Nat. Acad. Sci. USA 47, 1217 (1961).Google Scholar
  5. 5.
    H. J. Silverstone and O. Sinanoglu, J. Chem. Phys. 44, 1899 (1966).Google Scholar
  6. 6.
    C. Hollister and O. Sinanoglu, J. Am. Chem. Soc. 88, 13 (1966).Google Scholar
  7. 7.
    A. Pipano, R. R. Gilman, and I. Shavitt, Chem. Phys. Lett. 5, 285 (1970).Google Scholar
  8. 8.
    R. P. Hosteny, T. H. Dunning, Jr., R. R. Gilman, A. Pipano, and I. Shavitt, J. Chem. Phys. 62, 4764 (1975).Google Scholar
  9. 9.
    W. Ritz, J. Reine Angew. Math. 135, 1 (1909).Google Scholar
  10. 10.
    E. A. Hylleraas, Z. Phys. 48, 469 (1928).Google Scholar
  11. 11.
    S. Weinbaum, J. Chem. Phys. 1, 593 (1933).Google Scholar
  12. 12.
    H. M. James and A. S. Coolidge, J. Chem. Phys. 1, 825 (1933).Google Scholar
  13. 13.
    R. G. Parr, D. P. Craig, and I. G. Ross, J. Chem. Phys. 18, 1561 (1950).Google Scholar
  14. 14.
    M. J. M. Bernal and S. F. Boys, Philos. Trans. R. Soc. London, Ser. A 245, 139 (1952).Google Scholar
  15. 15.
    S. F. Boys, Proc. R. Soc. London, Ser. A 217, 136 (1953).Google Scholar
  16. 16.
    S. F. Boys, Proc. R. Soc. London, Ser. A 217, 235 (1953).Google Scholar
  17. 17.
    D. Kastler, J. Chim. Phys. 50, 556 (1953).Google Scholar
  18. 18.
    A. Meckler, J. Chem. Phys. 21, 1750 (1953).Google Scholar
  19. 19.
    S. F. Boys and V. E. Price, Philos. Trans. R. Soc. London, Ser. A 246, 451 (1954).Google Scholar
  20. 20.
    S. F. Boys, G. B. Cook, C. M. Reeves, and I. Shavitt, Nature 178, 1207 (1956).Google Scholar
  21. 21.
    E. U. Condon and G. H. Shortley, The Theory of Atomic Spectra, Cambridge U.P., London (1935).Google Scholar
  22. 22.
    R. S. Mulliken, Chem. Phys. Lett. 25, 305 (1974).Google Scholar
  23. 23.
    R. Courant and D. Hilbert, Methods of Mathematical Physics, Vol. 1, Interscience, New York (1953).Google Scholar
  24. 24.
    E. A. Hylleraas, Mathematical and Theoretical Physics, Vol. 1, Wiley-Interscience, New York (1970).Google Scholar
  25. 25.
    S. T. Epstein, The Variation Method in Quantum Chemistry, Academic Press, New York (1974).Google Scholar
  26. 26.
    L. Pauling and E. B. Wilson, Introduction to Quantum Mechanics, McGraw-Hill, New York (1935).Google Scholar
  27. 27.
    E. C. Kemble, The Fundamental Principles of Quantum Mechanics, McGraw-Hill, New York (1937).Google Scholar
  28. 28.
    A. Messiah, Quantum Mechanics, Vol. II, North-Holland, Amsterdam (1964).Google Scholar
  29. 29.
    J. C. Slater, Quantum Theory of Matter, 2nd ed., McGraw-Hill, New York (1968).Google Scholar
  30. 30.
    C. Eckart, Phys. Rev. 36, 878 (1930).Google Scholar
  31. 31.
    J. L. Powell and B. Crasemann, Quantum Mechanics, Addison-Wesley, Reading, Massachusetts (1961).Google Scholar
  32. 32.
    E. A. Hylleraas and B. Undheim, Z. Phys. 65, 759 (1930).Google Scholar
  33. 33.
    J. K. L. MacDonald, Phys. Rev. 43, 830 (1933).Google Scholar
  34. 34.
    H. Shull and P.-O. Löwdin, Phys. Rev. 110, 1466 (1958).Google Scholar
  35. 35.
    H. F. Weinberger, J. Res. Nat. Bur. Stand., Sect. B 64, 217 (1960).Google Scholar
  36. 36.
    J. Hinze and C. C. J. Roothaan, Prog. Theor. Phys. (Kyoto), Suppl. No. 40, 37 (1967).Google Scholar
  37. 37.
    I. Shavitt, J. Comput. Phys. 6, 124 (1970).Google Scholar
  38. 38.
    D. B. Neumann, H. Basch, R. L. Kornegay, L. C. Snyder, J. W. Moskowitz, C. Hornback, and S. P. Liebmann, POLYATOM (Version 2), Program 199, Quantum Chemistry Program Exchange, Indiana University, Bloomington, Indiana (1971).Google Scholar
  39. 39.
    M. Yoshimine, J. Comput. Phys. 11, 449 (1973).Google Scholar
  40. 40.
    A. D. McLean, in : Proceedings of the Conference on Potential Energy Surfaces in Chemistry (W. A. Lester, ed.), p. 87, Report RA 18, IBM Research Laboratory, San Jose, California (January, 1971).Google Scholar
  41. 41.
    P. S. Bagus, B. Liu, A. D. McLean, and M. Yoshimine, in : Energy, Structure, and Reactivity (D. W. Smith and W. B. McRae, eds.), p. 130, Wiley, New York (1973).Google Scholar
  42. 42.
    P.-O. Löwdin, Adv. Quantum Chem. 5, 185 (1970).Google Scholar
  43. 43.
    E. R. Davidson, J. Chem. Phys. 62, 400 (1975).Google Scholar
  44. 44.
    N. W. Winter, W. C. Ermler, and R. M. Pitzer, Chem. Phys. Lett. 19, 179 (1973).Google Scholar
  45. 45.
    P.-O. Löwdin, J. Chem. Phys. 18, 365 (1950).Google Scholar
  46. 46.
    C. F. Bender, J. Comput. Phys. 9, 547 (1972).Google Scholar
  47. 47.
    K. C. Tang and C. Edmiston, J. Chem. Phys. 52, 997 (1970).Google Scholar
  48. 48.
    G. H. F. Diercksen, Theor. Chim. Acta 33, 1 (1974).Google Scholar
  49. 49.
    P. Pendergast and W. H. Fink, J. Comput. Phys. 14, 286 (1974).Google Scholar
  50. 50.
    R. K. Nesbet, Rev. Mod. Phys. 35, 552 (1963).Google Scholar
  51. 51.
    S. T. Elbert, Ph.D. thesis, University of Washington, Seattle (1973).Google Scholar
  52. 52.
    R. M. Stevens, private communication.Google Scholar
  53. 53.
    R. M. Stevens, J. Chem. Phys. 61, 2086 (1974).Google Scholar
  54. 54.
    R. M. Pitzer, J. Chem. Phys. 58, 3111 (1973).Google Scholar
  55. 55.
    R. M. Pitzer, J. Chem. Phys. 59, 3308 (1973).Google Scholar
  56. 56.
    W. C. Ermler and C. W. Kern, J. Chem. Phys. 58, 3458 (1973).Google Scholar
  57. 57.
    J. C. Slater, Phys. Rev. 34, 1293 (1929).Google Scholar
  58. 58.
    A. Bunge, J. Chem. Phys. 53, 20 (1970).Google Scholar
  59. 59.
    A. D. McLean and B. Liu, J. Chem. Phys. 58, 1066 (1973).Google Scholar
  60. 60.
    P.-O. Löwdin, in : Calcul des Fonctions d’Onde Moléculaire (Colloques Internationaux du Centre National de la Recherche Scientifique, No. 82), p. 23, CNRS, Paris (1958).Google Scholar
  61. 61.
    M. Kotani, K. Ohno, and K. Kayama, in: Encylopedia of Physics (S. Flügge, ed.), Vol. 37/2, p. 1, Springer, Berlin (1961).Google Scholar
  62. 62.
    M. Kotani, A. Amemiya, E. Ishiguro, and T. Kimura, Tables of Molecular Integrals, 2nd ed., Maruzen, Tokyo (1963).Google Scholar
  63. 63.
    F. A. Matsen, Adv. Quantum Chem. 1, 59 (1964).Google Scholar
  64. 64.
    R. Pauncz, Alternant Molecular Orbital Method, Saunders, Philadelphia (1967).Google Scholar
  65. 65.
    F. E. Harris, Adv. Quantum Chem. 3, 61 (1967).Google Scholar
  66. 66.
    F. E. Harris, in : Energy, Structure, and Reactivity (D. W. Smith and W. B. McRae, eds.), p. 112, Wiley, New York (1973).Google Scholar
  67. 67.
    P.-O. Löwdin and O. Goscinski, Int. J. Quantum Chem., Symp. No. 3, 533 (1970).Google Scholar
  68. 68.
    J. I. Musher, J. Phys. (Paris) 31, Suppl. C4, 51 (1970).Google Scholar
  69. 69.
    K. Ruedenberg and R. D. Poshusta, Adv. Quantum Chem. 6, 267 (1972).Google Scholar
  70. 70.
    W. I. Salmon, Adv. Quantum Chem. 8, 37 (1974).Google Scholar
  71. 71.
    P.-O. Löwdin, Phys. Rev. 97, 1509 (1955).Google Scholar
  72. 72.
    V. H. Smith, Jr. and F. E. Harris, J. Math. Phys. 10, 771 (1969).Google Scholar
  73. 73.
    R. Manne, Theor. Chim. Acta 6, 116 (1966).Google Scholar
  74. 74.
    H. Weyl, Gruppentheorie und Quantenmechanik, Hirzel, Leipzig, Germany (1928) [English translation, The Theory of Groups and Quantum Mechanics, Methuen, London (1931), reprinted by Dover, New York].Google Scholar
  75. 75.
    E. Wigner, Z. Phys. 40, 492 (1927).Google Scholar
  76. 76.
    E. Wigner, Z. Phys. 40, 883 (1927).Google Scholar
  77. 77.
    E. Wigner, Gruppentheorie und ihre Anwendung auf die Quantenmechanik derAtomspektren, Vieweg, Braunschweig, Germany (1931) [English translation, Group Theory and Its Application to the Quantum Mechanics of Atomic Spectra, Academic Press, New York (1959)].Google Scholar
  78. 78.
    P. A. M. Dirac, Proc. R. Soc. London, Ser. A 123, 714 (1929).Google Scholar
  79. 79.
    I. Waller and D. R. Hartree, Proc. R. Soc. London, Ser. A 124, 119 (1929).Google Scholar
  80. 80.
    R. Serber, J. Chem. Phys. 2, 697 (1934).Google Scholar
  81. 81.
    T. Yamanouchi, Proc. Phys.-Math. Soc. Jpn. 17, 274 (1935).Google Scholar
  82. 82.
    T. Yamanouchi, Proc. Phys.-Math. Soc. Jpn. 19, 436 (1937).Google Scholar
  83. 83.
    H. V. McIntosh, J. Math. Phys. 1, 453 (1960).Google Scholar
  84. 84.
    W. A. Goddard III, Phys. Rev. 157, 73 (1967).Google Scholar
  85. 85.
    W. A. Goddard III, Int. J. Quantum Chem., Symp. No. 3, 593 (1970).Google Scholar
  86. 86.
    R. D. Poshusta and R. W. Kramling, Phys. Rev. 167, 139 (1968).Google Scholar
  87. 87.
    J. Gerratt and W. N. Lipscomb, Proc. Nat. Acad. Sci. USA 59, 332 (1968).Google Scholar
  88. 88.
    J. J. Sullivan, J. Math. Phys. 9, 1369 (1968).Google Scholar
  89. 89.
    G. Heldmann, Int. J. Quantum Chem. 2, 785 (1968).Google Scholar
  90. 90.
    G. Heldmann and P. Schnupp, J. Comput. Phys. 3, 208 (1968).Google Scholar
  91. 91.
    J. I. Musher and R. Silbey, Phys. Rev. 174, 94 (1968).Google Scholar
  92. 92.
    G. A. Gallup, J. Chem. Phys. 48, 1752 (1968).Google Scholar
  93. 93.
    G. A. Gallup, J. Chem. Phys. 50, 1206 (1969).Google Scholar
  94. 94.
    D. J. Klein, J. Chem. Phys. 50, 5140 (1969).Google Scholar
  95. 95.
    F. A. Matsen, J. Am. Chem. Soc. 92, 3525 (1970).Google Scholar
  96. 96.
    I. G. Kaplan and O. B. Rodimova, Int. J. Quantum Chem. 7, 1203 (1973).Google Scholar
  97. 97.
    T. K. Lim, Int. J. Quantum Chem. 8, 523 (1974).Google Scholar
  98. 98.
    M. Moshinsky, Group Theory and the Many-Body Problem, Gordon and Breach, New York (1968).Google Scholar
  99. 99.
    I. L. Gel’fand and M. L. Tsetlin, Dokl. Akad. Nauk SSSR 71, 825 (1950).Google Scholar
  100. 100.
    I. L. Gel’fand and M. L. Tsetlin, Dokl. Akad. Nauk SSSR 71, 1017 (1950).Google Scholar
  101. 101.
    J. Patera, J. Chem. Phys. 56, 1400 (1972).Google Scholar
  102. 102.
    W. G. Harter, Phys. Rev. A 8, 2819 (1973).Google Scholar
  103. 103.
    W. G. Harter and C. W. Patterson, Phys. Rev. A 13, 1067 (1976).Google Scholar
  104. 104.
    W. G. Harter and C. W. Patterson, Phys. Rev. A, in press.Google Scholar
  105. 105.
    F. A. Matsen, Int. J. Quantum Chem., Symp. No. 8, 379 (1974).Google Scholar
  106. 106.
    J. Paldus, J. Chem. Phys. 61, 5321 (1974).Google Scholar
  107. 107.
    J. Paldus, Int J. Quantum Chem., Symp. No. 9, 165 (1975).Google Scholar
  108. 108.
    J. Paldus, Theor. Chem. Adv. Perspec. 2, 131 (1976).Google Scholar
  109. 109.
    R. Pauncz, Chem. Phys. Lett. 31, 443 (1975).Google Scholar
  110. 110.
    F. A. Matsen, A. A. Cantu, and R. D. Poshusta, J. Phys. Chem. 70, 1558 (1966).Google Scholar
  111. 111.
    D. J. Klein and B. R. Junker, J. Chem. Phys. 54, 4290 (1971).Google Scholar
  112. 112.
    P. J. A. Ruttink, Theor. Chim. Acta 36, 289 (1975).Google Scholar
  113. 113.
    J. F. Gouyet, Phys. Rev. A 2, 139 (1970).Google Scholar
  114. 114.
    J. F. Gouyet, Phys. Rev. A 2 1286 (1970).Google Scholar
  115. 115.
    W. Heitler and G. Rumer, Z. Phys. 68, 12 (1931).Google Scholar
  116. 116.
    J. C. Slater, Phys. Rev. 38, 1109 (1931).Google Scholar
  117. 117.
    C. M. Reeves, Ph.D. thesis, University of Cambridge (1957).Google Scholar
  118. 118.
    C. M. Reeves, Commun. ACM 9, 276 (1966).Google Scholar
  119. 119.
    B. Sutcliffe, J. Chem. Phys. 45, 235 (1966).Google Scholar
  120. 120.
    I. L. Cooper and R. McWeeny, J. Chem. Phys. 45, 226, 3484 (1966).Google Scholar
  121. 121.
    K. Ruedenberg, Phys. Rev. Lett. 27, 1105 (1971).Google Scholar
  122. 122.
    W. I. Salmon and K. Ruedenberg, J. Chem. Phys. 57, 2776 (1972).Google Scholar
  123. 123.
    A. Pipano and I. Shavitt, unpublished work.Google Scholar
  124. 124.
    Z. Gershgorn and I. Shavitt, Int. J. Quantum Chem., Symp. No. 1, 403 (1967).Google Scholar
  125. 125.
    S. L. Altmann, in : Quantum Theory (D. R. Bates, ed.), Vol. II, p. 87, Academic Press, New York (1972).Google Scholar
  126. 126.
    M. A. Melvin, Rev. Mod. Phys. 28, 18 (1956).Google Scholar
  127. 127.
    P.-O. Löwdin, Rev. Mod. Phys. 39, 259 (1967).Google Scholar
  128. 128.
    J. Killingbeck, J. Math. Phys. 11, 2268 (1970).Google Scholar
  129. 129.
    A. Go lębiewski, Mol. Phys. 20, 481 (1971).Google Scholar
  130. 130.
    G. A. Gallup, Int. J. Quantum Chem. 8, 267 (1974).Google Scholar
  131. 131.
    R. McWeeny, Symmetry-An Introduction to Group Theory and Its Applications, Pergamon, London (1963).Google Scholar
  132. 132.
    R. L. Flurry, Jr., Theor. Chim. Acta 31, 221 (1973).Google Scholar
  133. 133.
    S. Flodmark, SYMPRO, Program 46, Quantum Chemistry Program Exchange, Indiana University, Bloomington, Indiana (1964).Google Scholar
  134. 134.
    S. Flodmark and E. Blokker, in : Group Theory and Its Applications (E. M. Loebl, ed.), Vol. II, Academic Press, New York (1971).Google Scholar
  135. 135.
    J. R. Gabriel, J. Comput. Phys. 2, 336 (1968).Google Scholar
  136. 136.
    R. Moccia, Theor. Chim. Acta 7, 85 (1967).Google Scholar
  137. 137.
    T. D. Bouman, A. L. H. Chung, and G. L. Goodman, in : Sigma Molecular Orbital Theory (O. Sinanoğlu and K. B. Wiberg, eds.), p. 333, Yale University Press, New Haven, Connecticut (1970).Google Scholar
  138. 138.
    A. L. H. Chung and G. L. Goodman, J. Chem. Phys. 56, 4125 (1972).Google Scholar
  139. 139.
    T. D. Bouman and G. L. Goodman, GPTHEORY, Program 214, Quantum Chemistry Program Exchange, Indiana University, Bloomington, Indiana (1972).Google Scholar
  140. 140.
    D. Létoquart, Int. J. Quantum Chem. 8, 627 (1974).Google Scholar
  141. 141.
    J. C. Hempel, J. C. Donini, B. R. Hellebone, and A. B. P. Lever, J. Am. Chem. Soc. 96, 1693 (1974).Google Scholar
  142. 142.
    J. R. Gabriel, J. Chem. Phys. 51, 3713 (1969).Google Scholar
  143. 143.
    B. G. Wybourne, Int. J. Quantum Chem. 7, 1117 (1973).Google Scholar
  144. 144.
    I. Sakata, J. Math. Phys. 15, 1702 (1974).Google Scholar
  145. 145.
    R. J. Buenker and S. D. Peyerimhoff, Theor. Chim. Acta 12,183 (1968).Google Scholar
  146. 146.
    H. F. Schaefer III and F. E. Harris, J. Comput. Phys. 3, 217 (1968).Google Scholar
  147. 147.
    H. F. Schaefer III, J. Comput. Phys. 6, 142 (1970).Google Scholar
  148. 148.
    G. Racah, in : Ergebnisse der exakten Naturwissenschaften (G. Höhler, ed.), Vol. 37, p. 28, Springer, Berlin (1965) [in English].Google Scholar
  149. 149.
    L. C. Biedenharn and H. Van Dam (eds.), Quantum Theory of Angular Momentum, Academic Press, New York (1965).Google Scholar
  150. 150.
    A. Rotenberg, J. Chem. Phys. 39, 512 (1963).Google Scholar
  151. 151.
    A. Rotenberg, PROP, Program 37, Quantum Chemistry Program Exchange, Indiana University, Bloomington, Indiana (1964).Google Scholar
  152. 152.
    P.-O. Löwdin, Rev. Mod. Phys. 36, 966 (1964).Google Scholar
  153. 153.
    C. F. Bunge and A. Bunge, J. Comput. Phys. 8, 409 (1971).Google Scholar
  154. 154.
    C. F. Bunge and A. Bunge, Int. J. Quantum Chem. 7, 927 (1973).Google Scholar
  155. 155.
    D. Munch and E. R. Davidson, J. Chem. Phys. 63, 980 (1975).Google Scholar
  156. 156.
    F. Sasaki, Int. J. Quantum Chem. 8, 605 (1974).Google Scholar
  157. 157.
    S. F. Boys and G. B. Cook, Rev. Mod. Phys. 32, 285 (1960).Google Scholar
  158. 158.
    R. P. Hosteny and S. A. Hagstrom, J. Chem. Phys. 58, 4396 (1973).Google Scholar
  159. 159.
    R. K. Nesbet, Ann. Phys. (N.Y.) 3, 397 (1958).Google Scholar
  160. 160.
    R. K. Nesbet, J. Math. Phys. 2, 701 (1961).Google Scholar
  161. 161.
    E. R. Davidson, Int. J. Quantum Chem. 8, 83 (1974).Google Scholar
  162. 162.
    F. E. Harris, J. Chem. Phys. 46, 2769 (1967).Google Scholar
  163. 163.
    F. E. Harris, J. Chem. Phys. 47, 1047 (1967).Google Scholar
  164. 164.
    J. E. Harriman, J. Chem. Phys. 40, 2827 (1964).Google Scholar
  165. 165.
    K. Mano, J. Math. Phys. 12, 2361 (1971).Google Scholar
  166. 166.
    R. C. Ladner and W. A. Goddard III, J. Chem. Phys. 51, 1073 (1969).Google Scholar
  167. 167.
    G. A. Gallup, J. Chem. Phys. 52, 893 (1970).Google Scholar
  168. 168.
    G. A. Gallup, Adv. Quantum Chem. 7, 113 (1973).Google Scholar
  169. 169.
    I. L. Cooper and J. I. Musher, J. Chem. Phys. 57, 1333 (1972).Google Scholar
  170. 170.
    I. L. Cooper and J. I. Musher, J. Chem. Phys. 59, 929 (1973).Google Scholar
  171. 171.
    T. E. H. Walker and J. I. Musher, Mol. Phys. 27, 1651 (1974).Google Scholar
  172. 172.
    J. F. Gouyet, J. Math. Phys. 13, 745 (1972).Google Scholar
  173. 173.
    J. F. Gouyet, R. Schranner, and T. H. Seligman, J. Phys. A 8, 285 (1975).Google Scholar
  174. 174.
    H. A. Kramers, Quantum Mechanics, North-Holland, Amsterdam (1958) [reprinted by Dover, New York (1964)].Google Scholar
  175. 175.
    H. C. Brinkman, Applications of Spinor Invariants in Atomic Physics, North-Holland, Amsterdam (1956).Google Scholar
  176. 176.
    W. I. Salmon, K. Ruedenberg, and L. M. Cheung, J. Chem. Phys. 57, 2787 (1972).Google Scholar
  177. 177.
    R. W. Wetmore and G. A. Segal, Chem. Phys. Lett. 36, 478 (1975).Google Scholar
  178. 178.
    L. Pauling, J. Chem. Phys. 1, 280 (1933).Google Scholar
  179. 179.
    A. D. McLachlan, J. Chem. Phys. 33, 663 (1960).Google Scholar
  180. 180.
    H. Shull, Int. J. Quantum Chem. 3, 523 (1969).Google Scholar
  181. 181.
    G. H. F. Diercksen and B. T. Sutcliffe, Theor. Chim. Acta 34, 105 (1974).Google Scholar
  182. 182.
    B. R. Gilson, PROJR, Program 218, Quantum Chemistry Program Exchange, Indiana University, Bloomington, Indiana (1972).Google Scholar
  183. 183.
    S. F. Boys, Proc. R. Soc. London, Ser. A 207, 181, 197 (1951).Google Scholar
  184. 184.
    S. F. Boys, Philos. Trans. R. Soc., Ser. A 245, 95 (1952).Google Scholar
  185. 185.
    M. J. M. Bernal and S. F. Boys, Philos. Trans R. Soc., Ser A 245, 116 (1952).Google Scholar
  186. 186.
    S. F. Boys and R. C. Sahni, Philos. Trans. R. Soc., Ser. A 246, 463 (1954).Google Scholar
  187. 187.
    L. W. Hunter, J. Chem. Phys. 60, 2670 (1974).Google Scholar
  188. 188.
    W. E. Donath, J. Chem. Phys. 35, 817 (1961).Google Scholar
  189. 189.
    F. Sasaki and M. Yoshimine, Phys. Rev. A 9, 17 (1974).Google Scholar
  190. 190.
    F. Sasaki and M. Yoshimine, Phys. Rev. A 9, 26 (1974).Google Scholar
  191. 191.
    A. Bunge and C. F. Bunge, Phys. Rev. A 1, 1599 (1970).Google Scholar
  192. 192.
    C. F. Bunge and E. M. A. Peixoto, Phys. Rev. A 1, 1277 (1970).Google Scholar
  193. 193.
    J. Simons and J. E. Harriman, J. Chem. Phys. 51, 296 (1969).Google Scholar
  194. 194.
    J. S. Griffiith, The Irreducible Tensor Method for Molecular Symmetry Groups, Prentice-Hall, Englewood Cliffs, New Jersey (1962).Google Scholar
  195. 195.
    C. Bottcher and J. C. Browne, J. Chem. Phys. 52, 3197 (1970).Google Scholar
  196. 196.
    R. S. Martin and J. H. Wilkinson, Numer. Math. 11, 99 (1968) [reprinted in Ref. 199, p. 303].Google Scholar
  197. 197.
    G. Peters and J. H. Wilkinson, SIAM J. Numer. Anal. 7, 479 (1970).Google Scholar
  198. 198.
    B. Ford and G. Hall, Comput. Phys. Commun. 8, 337 (1974).Google Scholar
  199. 199.
    J. H. Wilkinson and C. Reinsch, Linear Algebra (Vol. II of Handbook for Automatic Computation), Springer, New York (1971).Google Scholar
  200. 200.
    J. H. Wilkinson, The Algebraic Eigenvalue Problem, Oxford U.P., London (1965).Google Scholar
  201. 201.
    H. R. Schwarz, H. Rutishauser, and E. Stiefel, Numerical Analysis of Symmetric Matrices, Prentice-Hall, Englewood Cliffs, New Jersey (1973).Google Scholar
  202. 202.
    H. H. Goldstine, F. J. Murray, and J. von Neumann, J. Assoc. Comput. Mach. 6, 57 (1959).Google Scholar
  203. 203.
    F. J. Corbató, J. Assoc. Comput. Mach. 10, 123 (1963).Google Scholar
  204. 204.
    H. Rutishauser, Numer. Math. 9, 1 (1966) [reprinted in Ref. 199, p. 202].Google Scholar
  205. 205.
    W. E. Baylis, CEIGEN, Program 253, Quantum Chemistry Program Exchange, Indiana University, Bloomington, Indiana (1974).Google Scholar
  206. 206.
    C. Lanczos, J. Res. Nat. Bur. Stand. 45, 255 (1950).Google Scholar
  207. 207.
    W. Givens, in : Simultaneous Linear Equations and the Determination of Eigenvalues (L. J. Paige and O. Taussky, eds.), p. 117, Nat. Bur. Stand. Appl. Math. Series, No. 29, U.S. Govt. Printing Office, Washington, D.C. (1953).Google Scholar
  208. 208.
    W. Givens, Numerical Computation of the Characteristic Values of a Real Symmetric Matrix, Oak Ridge National Laboratory Report ORNL 1574 (March, 1954).Google Scholar
  209. 209.
    J. H. Wilkinson, Comput. J. 3, 23 (1960).Google Scholar
  210. 210.
    R. S. Martin, C. Reinsch, and J. H. Wilkinson, Numer. Math. 11, 181 (1968) [reprinted in Ref. 199, p. 212].Google Scholar
  211. 211.
    F. Prosser, GIVENS, Program 62.3, Quantum Chemistry Program Exchange, Indiana University, Bloomington, Indiana (1965).Google Scholar
  212. 212.
    B. S. Garbow, Comput. Phys. Commun. 7, 179 (1974).Google Scholar
  213. 213.
    J. M. Ortega, J. Assoc. Comput. Mach. 7, 260 (1960).Google Scholar
  214. 214.
    W. Barth, R. S. Martin, and J. H. Wilkinson, Numer. Math. 9, 386 (1967) [reprinted in Ref. 199, p. 249].Google Scholar
  215. 215.
    J. G. F. Francis, Comput. J. 4, 265 (1961).Google Scholar
  216. 216.
    J. G. F. Francis, Comput. J. 4, 332 (1962).Google Scholar
  217. 217.
    J. M. Ortega and H. F. Kaiser, Comput. J. 6, 99 (1963).Google Scholar
  218. 218.
    H. Bowdler, R. S. Martin, C. Reinsch, and J. H. Wilkinson, Numer. Math. 11, 293 (1968) [reprinted in Ref. 199, p. 227].Google Scholar
  219. 219.
    A. J. Fox and F. A. Johnson, Comput. J. 9, 98 (1966).Google Scholar
  220. 220.
    A. Dubrulle, R. S. Martin, and J. H. Wilkinson, Numer. Math. 12, 377 (1968) [reprinted in Ref. 199, p. 241].Google Scholar
  221. 221.
    C. Reinsch and F. L. Bauer, Numer. Math. 11, 264 (1968) [reprinted in Ref. 199, p. 257].Google Scholar
  222. 222.
    G. W. Stewart, Commun. ACM 13, 365, 369, 750 (1970).Google Scholar
  223. 223.
    J. H. Wilkinson, Comput. J. 1, 90 (1958).Google Scholar
  224. 224.
    G. Peters and J. H. Wilkinson, in Ref. 199, p. 418.Google Scholar
  225. 225.
    G. W. Stewart, in : Information Processing 74 (Proceedings of IFIP Congress 74, Stockholm), p. 666, North-Holland, Amsterdam (1974).Google Scholar
  226. 226.
    I. Shavitt, C. F. Bender, A. Pipano, and R. P. Hosteny, J. Comput. Phys. 11, 90 (1973).Google Scholar
  227. 227.
    S. Falk, Z. Angew. Math. Mech. 53, 73 (1973).Google Scholar
  228. 228.
    E. R. Davidson, J. Comput. Phys. 17, 87 (1975).Google Scholar
  229. 229.
    M. R. Hestenes and W. Karush, J. Res. Nat. Bur. Stand. 47, 45 (1951).Google Scholar
  230. 230.
    M. R. Hestenes and W. Karush, J. Res. Nat. Bur. Stand. 47, 471 (1951).Google Scholar
  231. 231.
    M. Clint and A. Jennings, Comput. J. 13, 76 (1970).Google Scholar
  232. 232.
    C. F. Bender, Ph.D. thesis, University of Washington, Seattle (1968).Google Scholar
  233. 233.
    D. K. Faddeev and V. N. Faddeeva, Computational Methods of Linear Algebra (English translation), Section 61, W. H. Freeman & Co., San Francisco (1963).Google Scholar
  234. 234.
    W. W. Bradbury and R. Fletcher, Numer. Math. 9, 259 (1966).Google Scholar
  235. 235.
    I. Fried, J. Sound Vibr. 20, 333 (1972).Google Scholar
  236. 236.
    A. Ruhe, in: Eigenwert Probleme (L. Collatz, ed.), p. 97, Birkhäuser, Basel (1974).Google Scholar
  237. 237.
    R. K. Nesbet, J. Chem. Phys. 43, 311 (1965).Google Scholar
  238. 238.
    H. H. Michels, NESBET, Program 93, Quantum Chemistry Program Exchange, Indiana University, Bloomington, Indiana (1966).Google Scholar
  239. 239.
    I. Shavitt, EIGEN, Program 172.1, Quantum Chemistry Program Exchange, Indiana University, Bloomington, Indiana (1970).Google Scholar
  240. 240.
    M. Raimondi and G. F. Tantardini, NESBET, Program 180, Quantum Chemistry Program Exchange, Indiana University, Bloomington, Indiana (1971).Google Scholar
  241. 241.
    H. R. Schwarz, Comput. Meth. Appl. Mech. Eng. 3, 11 (1974).Google Scholar
  242. 242.
    A. Ruhe, Math. Comput. 28, 695 (1974).Google Scholar
  243. 243.
    M. G. Feler, J. Comput. Phys. 14, 341 (1974).Google Scholar
  244. 244.
    R. S. Mulliken, J. Chem. Phys. 23, 1833 (1955);Google Scholar
  245. 244a.
    E. R. Davidson, J. Chem. Phys. 46. 3320 (1967).Google Scholar
  246. 245.
    P.-O. Löwdin, Phys. Rev. 97, 1474 (1955).Google Scholar
  247. 246.
    P.-O. Löwdin, Phys. Rev. 97, 1490 (1955).Google Scholar
  248. 247.
    R. McWeeny, Proc. R. Soc. London, Ser. A 253, 242 (1959).Google Scholar
  249. 248.
    R. McWeeny, Rev. Mod. Phys. 32, 335 (1960).Google Scholar
  250. 249.
    R. McWeeny and Y. Mizuno, Proc. R. Soc. London, Ser. A 259, 554 (1961).Google Scholar
  251. 250.
    A. J. Coleman, Rev. Mod. Phys. 35, 668 (1963).Google Scholar
  252. 251.
    A. J. Coleman and R. M. Erdahl (eds.), Reduced Density Matrices with Applications to Physical and Chemical Systems, Queen’s Papers on Pure and Applied Mathematics, No. 11, Queen’s University, Kingston, Ontario (1968).Google Scholar
  253. 252.
    W. A. Bingel and W. Kutzelnigg, Adv. Quantum Chem. 5, 201 (1970).Google Scholar
  254. 253.
    E. R. Davidson, Reduced Density Matrices in Quantum Chemistry, Academic Press, New York (1976).Google Scholar
  255. 254.
    D. W. Smith, in Ref. 251, p. 169.Google Scholar
  256. 255.
    H. D. Cohen and C. C. J. Roothaan, J. Chem. Phys. 43, S34 (1965).Google Scholar
  257. 256.
    J. A. Pople, J. W. McIver, Jr., and N. S. Ostlund, J. Chem. Phys. 49, 2960 (1968).Google Scholar
  258. 257.
    B. J. Rosenberg and I. Shavitt, J. Chem. Phys. 63, 2162 (1975).Google Scholar
  259. 258.
    E. R. Davidson, in: The World of Quantum Chemistry (R. Daudel and B. Pullman, eds.), p. 17, Reidel, Dodrecht, Holland (1974).Google Scholar
  260. 259.
    K. Ruedenberg, R. C. Raffenetti, and R. D. Bardo, in : Energy , Structure, and Reactivity (D. W. Smith and W. B. McRae, eds.), p. 164, Wiley, New York (1973).Google Scholar
  261. 260.
    P. S. Bagus, B. Liu, A. D. McLean, and M. Yoshimine, in : Computational Methods for Large Molecules and Localized States in Solids (F. Herman, A. D. McLean, and R. K. Nesbet, eds.), p. 87, Plenum Press, New York (1973).Google Scholar
  262. 261.
    H. F. Schaefer III, R. A. Klemm, and F. E. Harris, Phys. Rev. 181, 137 (1969).Google Scholar
  263. 262.
    J. L. Whitten and M. Hackmeyer, J. Chem Phys. 51, 5584 (1969);Google Scholar
  264. 262a.
    M. Hackmeyer and J. L. Whitten, J. Chem. Phys. 54, 3739 (1971).Google Scholar
  265. 263.
    S. Huzinaga and C. Arnau, Phys. Rev. A 1, 1285 (1970);Google Scholar
  266. 263a.
    S. Huzinaga and C. Arnau, J. Chem Phys. 54, 1948 (1971).Google Scholar
  267. 264.
    E. R. Davidson, J. Chem. Phys. 57, 1999 (1972).Google Scholar
  268. 265.
    H. P. Kelly, Phys. Rev. 136, B896 (1964).Google Scholar
  269. 266.
    W. J. Hunt and W. A. Goddard III, Chem. Phys. Lett. 3, 414 (1969).Google Scholar
  270. 267.
    N. Björnå, J. Phys. B. 6, 1412 (1973).Google Scholar
  271. 268.
    L. R. Kahn, P. J. Hay, and I. Shavitt, J. Chem. Phys. 61, 3530 (1974).Google Scholar
  272. 269.
    C. F. Bender and E. R. Davidson, J. Chem. Phys. 47, 4972 (1967).Google Scholar
  273. 270.
    J. L. Whitten, J. Chem. Phys. 56, 5458 (1972).Google Scholar
  274. 271.
    J. M. Foster and S. F. Boys, Rev. Mod. Phys. 32, 300 (1960).Google Scholar
  275. 272.
    R. K. Nesbet, Adv. Chem. Phys. 9, 321 (1965).Google Scholar
  276. 273.
    E. Steiner, J. Chem. Phys. 54, 1114 (1971).Google Scholar
  277. 274.
    O. Sinanoglu and B. Skutnik, Chem. Phys. Lett. 1, 699 (1968).Google Scholar
  278. 275.
    R. K. Nesbet, Phys. Rev. 175, 2 (1968).Google Scholar
  279. 276.
    C. F. Bender and E. R. Davidson, in Ref. 251, p. 335.Google Scholar
  280. 277.
    T. L. Barr and E. R. Davidson, Phys. Rev. A 1, 644 (1970).Google Scholar
  281. 278.
    R. J. Buenker and S. D. Peserimhoff, J. Chem. Phys. 53, 1368 (1970);Google Scholar
  282. 278a.
    S. Shih, R. J. Buenker, and S. D. Peyerimhoff, Chem. Phys. Lett. 16, 244 (1972).Google Scholar
  283. 279.
    E. R. Davidson, Rev. Mod. Phys. 44, 451 (1972).Google Scholar
  284. 280.
    P.-O. Löwdin and H. Shull, Phys. Rev. 101, 1730 (1956).Google Scholar
  285. 281.
    G. P. Barnett, J. Linderberg, and H. Shull, J. Chem. Phys. 43, S80 (1965).Google Scholar
  286. 282.
    H. F. Schaefer III, J. Chem. Phys. 54, 2207 (1971).Google Scholar
  287. 283.
    P. J. Hay, J. Chem. Phys. 59, 2468 (1973).Google Scholar
  288. 284.
    A. K. Q. Siu and E. F. Hayes, J. Chem. Phys. 61, 37 (1974).Google Scholar
  289. 285.
    C. F. Bender and E. R. Davidson, Phys. Rev. 183, 23 (1969).Google Scholar
  290. 286.
    I. Shavitt, B. J. Rosenberg, and S. Palalikit, Int. J. Quantum Chem., Symp. No. 10, 33 (1976).Google Scholar
  291. 287.
    C. F. Bender and E. R. Davidson, J. Phys. Chem. 70, 2675 (1966).Google Scholar
  292. 288.
    S. R. Langhoff and E. R. Davidson, Int. J. Quantum Chem. 7, 759 (1973).Google Scholar
  293. 289.
    I. Shavitt, in : Energy, Structure, and Reactivity (D. W. Smith and W. B. McRae, eds.), p. 188, Wiley, New York (1973).Google Scholar
  294. 290.
    W. Kutzelnigg, J. Chem. Phys. 40, 3640 (1964).Google Scholar
  295. 291.
    E. R. Davidson, J. Chem. Phys. 48, 3169 (1968).Google Scholar
  296. 292.
    R. Albat, Z. Naturforsch. 27a, 545 (1972).Google Scholar
  297. 293.
    V. Kvasnička, Theor. Chim. Acta 36, 297 (1975).Google Scholar
  298. 294.
    Z. Gershgorn and I. Shavitt, Int. J. Quantum Chem. 2, 751 (1968).Google Scholar
  299. 295.
    C. Edmiston and M. Krauss, J. Chem. Phys. 45, 1833 (1966).Google Scholar
  300. 296.
    W. Meyer, J. Chem. Phys. 58, 1017 (1973).Google Scholar
  301. 297.
    R. Ahlrichs and F. Driessler, Theor. Chim. Acta 36, 275 (1975).Google Scholar
  302. 298.
    S. A. Houlden and I. G. Csizmadia, Theor. Chim. Acta 30, 209 (1973).Google Scholar
  303. 299.
    C. F. Bender, private communication.Google Scholar
  304. 300.
    C. F. Bender and E. R. Davidson, J. Chem. Phys. 49, 4222 (1968).Google Scholar
  305. 301.
    A. K. Q. Siu and E. R. Davidson, Int. J. Quantum Chem. 4, 223 (1970).Google Scholar
  306. 302.
    E. R. Davidson, in : Energy, Structure, and Reactivity (D. W. Smith and W. B. McRae, eds.), p. 179, Wiley, New York (1973).Google Scholar
  307. 303.
    A. C. Wahl, P. J. Bertoncini, G. Das, and T. L. Gilbert, Int. J. Quantum Chem., Symp. No. 1, 123 (1967).Google Scholar
  308. 304.
    P. J. Bertoncini, G. Das, and A. C. Wahl, J. Chem. Phys. 52, 5112 (1970).Google Scholar
  309. 305.
    N. Sabelli and J. Hinze, J. Chem. Phys. 50, 684 (1969).Google Scholar
  310. 306.
    J. Hinze, in: Energy, Structure, and Reactivity (D. W. Smith and W. B. McRae, eds.), p. 170, Wiley, New York (1973).Google Scholar
  311. 307.
    G. C. Lie, J. Hinze, and B. Liu, J. Chem. Phys. 59, 1872 (1973).Google Scholar
  312. 308.
    P. Dejardin, E. Kochanski, A. Veillard, B. Roos, and P. Siegbahn, J. Chem. Phys. 59, 5546 (1973).Google Scholar
  313. 309.
    S.-I. Chu, M. Yoshimine, and B. Liu, J. Chem. Phys. 61, 5389 (1974).Google Scholar
  314. 310.
    G. D. Gillespie, A. U. Khan, A. C. Wahl, R. P. Hosteny, and M. Krauss, J. Chem. Phys. 63, 3425 (1975).Google Scholar
  315. 311.
    B. Levy, Int. J. Quantum Chem. 4, 297 (1970).Google Scholar
  316. 312.
    H. Shull, J. Chem. Phys. 30, 1405 (1959).Google Scholar
  317. 313.
    G. Das and A. C. Wahl, J. Chem. Phys. 44, 87 (1966).Google Scholar
  318. 314.
    R. C. Raffenetti and L. R. Kahn, unpublished work.Google Scholar
  319. 315.
    R. C. Raffenetti, K. Hsu, and I. Shavitt, Theor. Chim. Acta (in press), and unpublished work.Google Scholar
  320. 316.
    J. J. C. Mulder, Mol. Phys. 10, 479 (1966).Google Scholar
  321. 317.
    C. Møller and M. S. Plesset, Phys. Rev. 46, 618 (1934).Google Scholar
  322. 318.
    L. Brillouin, Les Champs “Self-Consistent” de Hartree et de Fock (Actualités Sci. Ind. No. 159), Hermann & Cie., Paris (1934).Google Scholar
  323. 319.
    R. K. Nesbet, Proc. R. Soc. London, Ser. A 230, 312 (1955).Google Scholar
  324. 320.
    P. Claverie, S. Diner, and J. P. Malrieu, Int. J. Quantum Chem. 1, 751 (1967).Google Scholar
  325. 321.
    F. Grimaldi, A. Lecourt, and C. Moser, Int. J. Quantum Chem., Symp. No. 1, 153 (1967).Google Scholar
  326. 322.
    F. Coester and H. Kümmel, Nucl. Phys. 17, 477 (1960).Google Scholar
  327. 323.
    J. da Providência, Nucl. Phys. 61, 87 (1965).Google Scholar
  328. 324.
    J. Číek,J. Chem. Phys. 45, 4256 (1966).Google Scholar
  329. 325.
    J. Čížek, Adv. Chem. Phys. 14, 35 (1969).Google Scholar
  330. 326.
    J. Čížek and J. Paldus, Int. J. Quantum Chem. 5, 359 (1971).Google Scholar
  331. 327.
    O. Sinanoğlu, Adv. Chem. Phys. 6, 315 (1964).Google Scholar
  332. 328.
    O. Sinanoğlu, Adv. Chem. Phys. 14, 237 (1969).Google Scholar
  333. 329.
    R. K. Nesbet, Adv. Chem. Phys. 14, 1 (1969).Google Scholar
  334. 330.
    H. P. Kelly, Adv. Chem. Phys. 14, 129 (1969).Google Scholar
  335. 331.
    O. Sinanoğlu, J. Chem. Phys. 36, 706 (1962).Google Scholar
  336. 332.
    J. Paldus, J. Čížek, and I. Shavitt, Phys. Rev. A 5, 50 (1972).Google Scholar
  337. 333.
    R. Ahlrichs and W. Kutzelnigg, J. Chem. Phys. 48, 1819 (1968).Google Scholar
  338. 334.
    W. Meyer, Int. J. Quantum Chem., Symp. No. 5, 59 (1971).Google Scholar
  339. 335.
    R. Ahlrichs, H. Lischka, V. Staemmler, and W. Kutzelnigg, J. Chem. Phys. 62, 1225 (1975).Google Scholar
  340. 336.
    R. Ahlrichs, F. Driessler, H. Lischka, V. Staemmler, and W. Kutzelnigg, J. Chem. Phys. 62, 1235 (1975);Google Scholar
  341. 337.
    A. Pipano and I. Shavitt, Int. J. Quantum Chem. 2, 741 (1968).Google Scholar
  342. 338.
    S. R. Langhoff and E. R. Davidson, Int. J. Quantum Chem. 8, 61 (1974).Google Scholar
  343. 339.
    C. Bloch and J. Horowitz, Nucl. Phys. 8, 91 (1958).Google Scholar
  344. 340.
    B. H. Brandow, Rev. Mod. Phys. 39, 771 (1967).Google Scholar
  345. 341.
    U. Kaldor, Phys. Rev. Lett. 31, 1338 (1973).Google Scholar
  346. 342.
    I. Lindgren, J. Phys. B. 7, 2441 (1974).Google Scholar
  347. 343.
    S. D. Peyerimhoff and R. J. Buenker, J. Chem. Phys. 49, 2473 (1968).Google Scholar
  348. 344.
    T. H. Dunning, Jr., W. J. Hunt, and W. A. Goddard III, Chem. Phys. Lett. 4, 147 (1969).Google Scholar
  349. 345.
    S. D. Peyerimhoff and R. J. Buenker, Theor. Chim. Acta 19, 1 (1970).Google Scholar
  350. 346.
    R. J. Buenker and S. D. Peyerimhoff, Chem. Phys. 9, 75 (1975).Google Scholar
  351. 347.
    H. F. Schaefer III and C. F. Bender, J. Chem. Phys. 55, 1720 (1971).Google Scholar
  352. 348.
    K. Morokuma and H. Konishi, J. Chem. Phys. 55, 402 (1971).Google Scholar
  353. 349.
    C. F. Bender and E. R. Davidson, J. Chem. Phys. 46, 3313 (1967).Google Scholar
  354. 350.
    R. J. Buenker and S. D. Peyerimhoff, Thoer. Chim. Acta 35, 33 (1974).Google Scholar
  355. 351.
    P. K. Pearson, C. F. Bender, and H. F. Schaefer III, J. Chem. Phys. 55, 5235 (1971).Google Scholar
  356. 352.
    G. A. Segal and R. W. Wetmore, Chem. Phys. Lett. 32, 556 (1975).Google Scholar
  357. 353.
    S. Iwata and K. F. Freed, Chem. Phys. 11, 433 (1975).Google Scholar
  358. 354.
    P. J. Fortune and B. J. Rosenberg, Chem. Phys. Lett. 37, 110 (1976).Google Scholar
  359. 355.
    C. F. Bunge, Phys. Rev. 168, 92 (1968).Google Scholar
  360. 356.
    S. F. Boys and I. Shavitt, A Fundamental Calculation of the Energy Surface for the System of Three Hydrogen Atoms, University of Winsconsin Naval Research Laboratory Technical Report WIS-AF-13 (March 4, 1959).Google Scholar
  361. 357.
    R. E. Brown, Ph.D. thesis, Indiana University, Bloomington, Indiana (1967).Google Scholar
  362. 358.
    R. J. Buenker and S. D. Peyerimhoff, Theor. Chim. Acta 39, 217 (1975).Google Scholar

Copyright information

© Springer Science+Business Media New York 1977

Authors and Affiliations

  • Isaiah Shavitt
    • 1
  1. 1.Battelle Memorial Institute, Columbus, Ohio and Department of ChemistryThe Ohio State UniversityColumbusUSA

Personalised recommendations