Advertisement

The Floating Spherical Gaussian Orbital Method

  • Arthur A. Frost
Part of the Modern Theoretical Chemistry book series (MTC, volume 3)

Abstract

One important object of molecular quantum mechanics is the calculation of the stationary state energies of molecular systems as functions of the geometrical configuration of their nuclei. By finding the energy minima one can predict the equilibrium geometric form of molecules, including internuclear distances and bond angles. The procedure implies the use of the Born-Oppenheimer approx­imation which is known to be excellent for the ground electronic state of most molecules.

Keywords

Lone Pair Slater Determinant Orbital Radius Molecular Orbital Theory Group Orbital 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. F. Schaefer III,The Electronic Structure of Atoms and Molecules, Addison-Wesley Publishing Co., Reading, Mass. (1972).Google Scholar
  2. 2.
    L. C. Snyder and H. Basch, Molecular Wave Functions and Properties, John Wiley and Sons, New York (1972).Google Scholar
  3. 3.
    W. G. Richards, T. E. H. Walker, and R. K. Hinkley, A Bibliography of Ab Initio Molecular Wave Function, Oxford University Press, London (1972).Google Scholar
  4. 4.
    F. E. Harris, Quantum chemistry, Annu. Rev. Phys. Chem. 23, 415–438 (1972); also previous reviews referenced therein.CrossRefGoogle Scholar
  5. 5.
    C. C. J. Roothaan, New developments in molecular orbital theory, Rev. Mod. Phys. 23,69 (1951).CrossRefGoogle Scholar
  6. 6.
    G. G. Hall, The molecular orbital theory of chemical valency. VIII.A method of calculating ionization potentials, Proc. R. Soc. London, Ser. A 205,541 (1951).CrossRefGoogle Scholar
  7. 7.
    E. Clementi and D. R. Davis, Electronic structure of large molecular systems, J. Comput. Phys. 2,223 (1967).Google Scholar
  8. 8.
    J. C. Slater, Quantum Theory of Molecules and Solids, Vol. 1, McGraw-Hill Book Co., New York (1963).Google Scholar
  9. 9.
    P.-O. Löwdin, On the non-orthogonality problem connected with the use of atomic wave functions in the theory of molecules and crystals, J. Chem. Phys. 18, 365 (1950).CrossRefGoogle Scholar
  10. 10.
    S. F. Boys, Electronic wave functions. I. A general method of calculation for the stationary states of any molecular system, Proc. R. Soc. London, Ser. A 200,542 (1950).CrossRefGoogle Scholar
  11. 11.
    I.Shavitt, The gaussian function in calculations in statistical mechanics and quantum mechanics, Methods Comput. Phys. 2,1 (1963).CrossRefGoogle Scholar
  12. 12.
    H. Preuss, Bemerkungen zum Self-consistent-field-Verfahren and zur Methode der Konfigurationenwechselwirkung in der Quantenchemie, Z. Natwforsch. 11a,823 (1956).Google Scholar
  13. 13.
    J.L. Whitten, Gaussian expansion of hydrogen-atom wave functions, J. Chem. Phys. 39,349 1963.CrossRefGoogle Scholar
  14. 14.
    W. J. Hehre, R. F. Stewart, and J. A. Pople, Self-consistent molecular-orbital methods. I. Use of Gaussian expansions of Slater-type atomic orbitals, J. Chem. Phys. 51, 2657 (1969).CrossRefGoogle Scholar
  15. 15.
    R. P. Hosteny, R. R. Gilman, T. H. Dunning, A. Pipano, and I.Shavitt, Comparison of Slater and contracted Gaussian basis sets in SCF and CI calculations on H20, Chem Phys. Lett. 7,325 (1970).CrossRefGoogle Scholar
  16. 16.
    V. Fock, Näherungsmethode zur Lösung des quantenmechanischen Mehrkörperproblems, Z. Phys.61, 126 (1930); see also Ref. 5.CrossRefGoogle Scholar
  17. 17.
    C. Edmiston and K. Ruedenberg, Localized atomic and molecular orbitals, Rev. Mod. Phys.35, 457 (1963).CrossRefGoogle Scholar
  18. 18.
    D. Peters, Computation of the SCF molecular orbital wavefunction in terms of localized orbitals, J. Chem. Phys.46, 4427 (1967).CrossRefGoogle Scholar
  19. 19.
    J. R. Hoyland, Ab initio bond-orbital calculations. I. Application to methane, ethane, propane and propylene, J. Am. Chem. Soc.90, 2227 (1968).CrossRefGoogle Scholar
  20. 20.
    J. H. Letcher and T. H. Dunning, Localized orbitals. I. б- bonds J. Chem. Phys. 48, 4538 (1968).CrossRefGoogle Scholar
  21. 21.
    R. D. Brown, A quantum-mechanical treatment of aliphatic compounds. Part I. Paraffins, J Chem. Soc.1953, 2615 (1953).CrossRefGoogle Scholar
  22. 22.
    W. C. Herndon, Unparameterized localized orbital calculations for saturated hydrocarbons, Chem. Phys. Lett.10, 460 (1971).CrossRefGoogle Scholar
  23. 23.
    G. N. Lewis, The atom and the molecule, J. Am. Chem. Soc.38, 762 (1916)CrossRefGoogle Scholar
  24. 23a.
    G. N. Lewis, Valence and the Structure of Atoms and Molecules, Chemical Catalog Co., New York (1923).Google Scholar
  25. 24.
    G. E. Kimball and G. F. Neumark, Use of Gaussian wave functions in molecular calculations, J. Chem. Phys.26, 1285 (1957).CrossRefGoogle Scholar
  26. 25.
    G. F. Neumark, Free Cloud Approximation to Molecular Orbital Calculation, Ph.D. disserta­tion, Columbia University (1951); University Microfilms Publication No. 2845.Google Scholar
  27. 26.
    H. Preuss, Ein neues Programm zur quantentheoretischen Berechnung von Molekülen and Atomsystem. I. Grundlagen, Mol. Phys. 8, 157 (1964).CrossRefGoogle Scholar
  28. 27.
    A. A. Frost, B. H. Prentice III, and R. A. Rouse, A simple floating localized orbital model of molecular structure, J. Am. Chem. Soc.89, 3064 (1967).CrossRefGoogle Scholar
  29. 28.
    A. A. Frost, Floating spherical Gaussian orbital model of molecular structure. I. Computa­tional procedure. LiH as an example, J. Chem. Phys.47, 3707 (1967).CrossRefGoogle Scholar
  30. 29.
    A. A. Frost, Floating spherical Gaussian orbital model of molecular structure. II. One- and two-electron-pair systems, J. Chem. Phys.47, 3714 (1967).CrossRefGoogle Scholar
  31. 30.
    A. A. Frost, A floating spherical Gaussian orbital model of molecular structure. III. First-row atom hydrides, J. Phys. Chem.72, 1289 (1968).CrossRefGoogle Scholar
  32. 31.
    A. A. Frost and R. A. Rouse, A floating spherical Gaussian orbital model of molecular structure. IV. Hydrocarbons, J. Am. Chem. Soc.90, 1965 (1968).CrossRefGoogle Scholar
  33. 32.
    A. A. Frost, R. A. Rouse, and L. Vescelius, A floating spherical Gaussian orbital model of molecular structure. V. Computer programs, Int. J. Quantum Chem. IIS, 43 (1968).Google Scholar
  34. 33.
    R. A. Rouse and A. A. Frost, Floating spherical Gaussian orbital model of molecular structure. VI. Double-Gaussian modification, J. Chem. Phys.50, 1705 (1969).CrossRefGoogle Scholar
  35. 34.
    A. A. Frost, A floating spherical Gaussian orbital model of molecular structure VII. Borazane and diborane, Theor. Chim. Acta18, 156 (1970).CrossRefGoogle Scholar
  36. 35.
    S. Y. Chu and A. A. Frost, Floating spherical Gaussian orbital model of molecular structure. VIII. Second-row atom hydrides, J. Chem. Phys. 54, 760 (1971).CrossRefGoogle Scholar
  37. 36.
    S. Y. Chu and A. A. Frost, Floating spherical Gaussian orbital model of molecular structure. IX. Diatomic molecules of first-row and second-row atoms, J. Chem. Phys. 54, 764 (1971).CrossRefGoogle Scholar
  38. 37.
    A. A. Frost, The potential energy surface of the H3 system using floating Gaussian orbitals, Adv. Chem. Phys.21, 65 (1971).CrossRefGoogle Scholar
  39. 38.
    J. L. Nelson and A. A. Frost, A floating spherical Gaussian orbital model of molecular structure. X. C3 and C4 saturated hydrocarbons and cyclobutane, J. Am. Chem. Soc. 94, 3727 (1972).CrossRefGoogle Scholar
  40. 39.
    J. L. Nelson, and A. A. Frost, A floating spherical Gaussian orbital model of molecular structure. ESCA chemical shifts for inner shell electrons for small hydrocarbons, Chem. Phys. Lett. 13, 610 (1972).CrossRefGoogle Scholar
  41. 40.
    M. Afzal and A. A. Frost, A floating spherical Gaussian orbital model of molecular structure. XII. Analysis of energy terms affecting the geometry of the water molecule, Mt. J. Quantum Chem. VII, 51 (1973).CrossRefGoogle Scholar
  42. 41.
    J. L. Nelson and A. A. Frost, Local orbitals for bonding in ethane, Theor. Chim. Acta29, 75 (1973).CrossRefGoogle Scholar
  43. 42.
    J. L. Nelson, C. C. Cobb, and A. A. Frost, FSGO investigation of several conformers of cyclopentane, J. Chem. Phys.60, 712 (1974).CrossRefGoogle Scholar
  44. 43.
    J. Bicerano and A. A. Frost, FSGO calculations of octahydrotriborate anion and tetraborane, Theor. Chim. Acta35, 71 (1974).CrossRefGoogle Scholar
  45. 44.
    L. Vescelius and A. A. Frost, Ellipsoidal Gaussian molecular calculations, J. Chem. Phys.61, 2983 (1974).CrossRefGoogle Scholar
  46. 45.
    L. Shipman and R. E. Christoffersen, High speed evaluation of F o (x), Comput. Phys. Commun. 2, 201 (1971).CrossRefGoogle Scholar
  47. 46.
    D. B. Neumann, H. Basch, R. L. Kornegay, L. C. Snyder, J. W. Moskowitz, C. Hornback, and S. P. Liebmann, Polyatom (Version 2) System of Programs for Quantitative Theoretical Chemistry, Program 199, Quantum Chemistry Program Exchange, Indiana University, Bloomington, Indiana, 1972.Google Scholar
  48. 47.
    M. A. Robb and I. G. Csizmadia, The generalized separated electron pair model. III. An application to three localization schemes for CO, Int. J. Quantum Chem.6, 367 (1972).CrossRefGoogle Scholar
  49. 48.
    M. A. Robb, W. J. Haines, and I. G. Csizmadia, A theoretical definition of the “size” of electron pairs and its stereochemical implications, J. Am. Chem. Soc.95, 42 (1973).CrossRefGoogle Scholar
  50. 49.
    P. E. Cade and W. M. Huo, Electronic structure of diatomic molecules. VI. A. Hartree-Fock wavefunctions and energy quantities for the ground states of the first-row hydrides, AH, J.Chem. Phys. 47, 614 (1967).CrossRefGoogle Scholar
  51. 50.
    M. Jungen, Das “floating Gaussian orbital”-Modell als Hilfsmittel zur interpretation von Photoelektronen-Spektren, Theor. Chim. Acta22, 255 (1971).CrossRefGoogle Scholar
  52. 51.
    P. H. Blustin and J. W. Linnett, Applications of a simple molecular wavefunction. Part 1. Floating spherical Gaussian orbital calculations for propylene and propane, J. Chem. Soc., Faraday Trans. 2, 70, 274 (1974).CrossRefGoogle Scholar
  53. 52.
    G. G. Hall, Point charge models for molecular properties, Chem. Phys. Lett. 20, 501 (1973).CrossRefGoogle Scholar
  54. 53.
    A. D. Tait and G. G. Hall, Point charge models for LiH, CH4 and H2O, Theor. Chim. Acta 31, 311 (1973).CrossRefGoogle Scholar
  55. 54.
    L. L. Shipman, Derivation of a total charge and dipole moment-preserving population analysis for FSGO wavefunctions, Chem. Phys. Lett.31, 361 (1975).CrossRefGoogle Scholar
  56. 55.
    T. D. Davis and A. A. Frost, FSGO investigation of several conformers of cyclohexane, J. Am. Chem. Soc.97, 7410 (1975).CrossRefGoogle Scholar
  57. 56.
    P. H. Blustin and J. W. Linnett, Applications of a simple molecular wavefunction. Part 2. Torsional barrier in ethane, J. Chem. Soc., Faraday Trans. 2 70, 290 (1974).CrossRefGoogle Scholar
  58. 57.
    J. R. Easterfield and J. W. Linnett, Applications of a simple molecular wavefunction, Part 4. The force fields of BH4 -, CH4 and NH4 +, J. Chem. Soc., Faraday Trans. 2 70, 317 (1974).CrossRefGoogle Scholar
  59. 58.
    S. L. Schulman, Ab initio Calculation of Spectroscopic Constants Using the FSGO Model, Ph.D. dissertation, Northwestern University, Evanston, Illinois (1973).Google Scholar
  60. 59.
    J. Easterfield and J. W. Linnett, The ions FL; and the possibility of LiHn + and BeHn +, Chem. Commun. 1970, 64.Google Scholar
  61. 60.
    J. Easterfield and J. W. Linnett, Theoretical calculations on the ion cluster Li(H2)n + and BeH(H2)n +, Nature 226, 141 (1970).CrossRefGoogle Scholar
  62. 61.
    W. D. Erickson and J. W. Linnett, Gaussian orbital calculations of solids. Crystalline lithium hydride, J. Chem. Soc., Faraday Trans. 2 68, 693 (1972).CrossRefGoogle Scholar
  63. 62.
    W. D. Erickson and J. W. Linnett, An ab initio Gaussian orbital calculation of the (100) surface of crystalline lithium hydride, Proc. R. Soc. London, Ser. A331, 347 (1972).CrossRefGoogle Scholar
  64. 63.
    P. H. Blustin and J. W. Linnett, Applicatons of a simple molecular wavefunction. Part 3. Ethyl and propyl carbonium ions, J. Chem. Soc., Faraday Trans. 2 70, 297 (1974).CrossRefGoogle Scholar
  65. 64.
    R. A. Suthers and J. W. Linnett, On the localized nature of FSGO wavefunctions, Chem. Phys. Lett.25, 84 (1974).CrossRefGoogle Scholar
  66. 65.
    N. K. Ray, Floating spherical Gaussian orbital model calculation for LiH2 +, Li2H+ and Li3 +, J. Chem. Phys.52, 463 (1970).CrossRefGoogle Scholar
  67. 66.
    N. K. Ray, Theoretical study of the structure of protonated ethane (C2H7 +), Theoret. Chim. Acta23, 111 (1971).CrossRefGoogle Scholar
  68. 67.
    I. Tamássy-Lentei and J. Szaniszló, Calculation of the proton affinity of several small molecules by the FSGO method, Acta Phys. Acad. Sci. Hung.35, 201 (1974).CrossRefGoogle Scholar
  69. 68.
    I. Tamássy-Lentei and J. Szaniszló, Interaction of atoms and ions with two electrons, Acta Phys. Chim. Debrecina. 18, 61 (1972).Google Scholar
  70. 69.
    B. Tinland and C. Decoret, An ab initio study of the conformation of 1,4-dioxadience, J. Mol. Struct. 9,205 (1971).CrossRefGoogle Scholar
  71. 70.
    J. A. Pople and D. L. Beveridge, Approximate Molecular Orbital Theory, McGraw-Hill Book Co., New York (1970), p. 58.Google Scholar
  72. 71.
    W. A. Lathan, W. J. Hehre, and J. A. Pople, Molecular orbital theory of the electronic structure of organic compounds. VI. Geometries and energies of small hydrocarbons, J. Am. Chem. Soc. 93,808 (1971).CrossRefGoogle Scholar
  73. 72.
    J. Katriel and G. Adam, Comparative study of ellipsoidal Gaussians: H2 and He2 ++ J. Chem. Phys. 53,302 (1970).CrossRefGoogle Scholar
  74. 73.
    G. Simons and A. K. Schwartz, Floating ellipsoidal Gaussian orbital computations on small molecules, J. Chem. Phys. 60,2272 (1974).CrossRefGoogle Scholar
  75. 74.
    P. T. van Duijnen and D. B. Cook, Ab initio calculations with small ellipsoidal gaussian basis sets. I and II, Mol. Phys. 21, 475 (1971)CrossRefGoogle Scholar
  76. 74a.
    P. T. van Duijnen and D. B. Cook, Ab initio calculations with small ellipsoidal gaussian basis sets. I and II, Mol. Phys. 22, 637 (1971).CrossRefGoogle Scholar
  77. 75.
    S. Rothenberg and H. F. Schaefer III, Methane as a numerical experiment for polarization basis function selection, J. Chem. Phys. 54,2764 (1971).CrossRefGoogle Scholar
  78. 76.
    J. C. Barthelat and P. Durand, Orbitales moléculaires localisées: structure électronique de la molecule de methane, Theoret. Chim. Acta 27, 109 (1972).CrossRefGoogle Scholar
  79. 77.
    L. P. Tan and J. W. Linnett, The lone-pair orbital in NH3 and the calculation of the HNH angle, J. Chem. Soc. D. 1973, 736.Google Scholar
  80. 78.
    K. Muller, private communication, 1972.Google Scholar
  81. 79.
    H. Preuss, Das SCF-MO-P(LCGO)-Verfahren and seine Varianten, Int. J. Quantum Chem. II, 651 (1968).CrossRefGoogle Scholar
  82. 80.
    P. Schmittinger, Das Wassermolekül nach dem SCF-MO-P(LCGO)-Verfahren, Z. Natur­forsch. 26a,1411 (1971).Google Scholar
  83. 81.
    B. Ford, G. G. Hall, and J. C. Packer, Molecular modelling with spherical Gaussians, Int. J. Quantum Chem. IV, 533 (1970).CrossRefGoogle Scholar
  84. 82.
    M. Tropis and P. Durand, Description des orbitales Π- et IT de la molecule d’ethylene par une base réduite de fonctions Gaussionnes sphériques, C. R. Acad. Sci. Paris C276, 1775 (1973).Google Scholar
  85. 83.
    R. M. Archibald, D. R. Armstrong, and P. G. Perkins, Molecular calculations using spherical Gaussian orbitals. Part 1.—Optimisation of the atomic parameters for first-row atoms, J. Chem. Soc., Faraday Trans. 2 70, 1557 (1974).CrossRefGoogle Scholar
  86. 84.
    P. H. Blustin and J. W. Linnett, Applications of a simple molecular wavefunction. Part 5 —Floating spherical Gaussian orbital open-shell calculations: Introduction, J. Chem. Soc., Faraday Trans. 2 70, 327 (1974).CrossRefGoogle Scholar
  87. 85.
    R. E. Christoffersen, D. W. Genson, and G. M. Maggiora, Ab initio calculations on large molecules using molecular fragments. Hydrocarbon characterizations, J. Chem. Phys. 54, 239 (1971).CrossRefGoogle Scholar
  88. 86.
    R. E. Christoffersen, Ab initio calculations on large molecules, Adv. Quantum Chem. 6, 333 (1972).CrossRefGoogle Scholar
  89. 87.
    L. L. Shipman and R. E. Christoffersen, Ab initio calculations on large molecules using molecular fragments. Model peptide studies. Polypeptides of glycine, J. Am. Chem. Soc. 95, 1408, 4733 (1973).CrossRefGoogle Scholar
  90. 88.
    T. D. Davis, G. M. Maggiora, and R. E. Christoffersen, Ab initio calculations on large molecules using molecular fragments. Unrestricted Hartree–Fock calculations on the low- lying states of formaldehyde and its radical ions, J. Am. Chem. Soc. 96, 7878 (1974).CrossRefGoogle Scholar
  91. 89.
    G. Nicolas and P. Durand, Orbitales moléculaires localisées ou fonctions de Loge et approxi­mation de Mulliken, C. R. Acad. Sci. Paris C272, 1482 (1971).Google Scholar
  92. 90.
    J. C. Barthelet and P. Durand, Pseudopotentials and localized molecular orbitals. Application to the methane molecule, Chem. Phys. Lett. 16, 63 (1972).CrossRefGoogle Scholar
  93. 91.
    A. T. Amos and J. A. Yaffe, The Frost model and perturbation theory, Chem. Phys. Lett. 31, 57 (1975).CrossRefGoogle Scholar
  94. 92.
    E. R. Talaty, A. K. Schwartz, and G. Simons, Simple ab initio studies of the isomers of N2H2, Li2O, C3H4 and O3, J. Am. Chem. Soc. 97, 972 (1975).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1977

Authors and Affiliations

  • Arthur A. Frost
    • 1
  1. 1.Department of ChemistryNorthwestern UniversityEvanstonUSA

Personalised recommendations