Advertisement

Polyatom: A General Computer Program for Ab Initio Calculations

  • Jules W. Moskowitz
  • Lawrence C. Snyder
Part of the Modern Theoretical Chemistry book series (MTC, volume 3)

Abstract

The Polyatom (1,2) system of computer programs was written to make quantitative wave mechanical descriptions of molecules. These programs employ a Gaussian basis set to compute determinantal electronic wave functions and corresponding derived properties. The computations are made in an ab initio style which includes all electrons and computes all integrals.

Keywords

Molecular Orbital General Computer Program Bell Laboratory Symmetry Orbital Compton Profile 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. G. Csizmadia, M. C. Harrison, J. W. Moskowitz, S. Seung, B. T. Sutcliffe, and M. P. Barnett, QCPE # 47.1 POLYATOM-Program set for nonempirical molecular calculations, Quantum Chemistry Exchange Program, Indiana University, Bloomington, Indiana 47401.Google Scholar
  2. 2.
    D. B. Neumann, H. Basch, R. L. Kornegay, L. C. Snyder, J. W. Moskowitz, C. Hornback, and S. P. Liebmann, QCPE # 199, The POLYATOM (Version 2) System of Programs for Quantitative Theoretical Chemistry.Google Scholar
  3. 3.
    S. F. Boys, Electronic wave functions. I. A general method of calculation for the stationary states of any molecular system, Proc. R. Soc. London, Ser. A 200, 542 (1950).CrossRefGoogle Scholar
  4. 4.
    S. F. Boys and G. B. Cook, Mathematical problems in the complete quantum predictions of chemical phenomena, Rev. Mod. Phys. 32, 285 (1960).CrossRefGoogle Scholar
  5. 5.
    S. F. Boys, G. B. Cook, C. M. Reeves, and I. Shavitt, Automatic fundamental calculations of molecular structure, Nature 178, 1207 (1956).CrossRefGoogle Scholar
  6. 6.
    C. M. Reeves, Use of Gaussian Functions in the calculation of wave functions for small molecules. I. Preliminary investigations, J. Chem. Phys. 39, 1 (1963).CrossRefGoogle Scholar
  7. 7.
    C. M. Reeves and M. C. Harrison, Use of Gaussian functions in the calculation of wave functions for small molecules. II. The ammonia molecule, J. Chem. Phys. 39, 11 (1963).CrossRefGoogle Scholar
  8. 8.
    M. P. Barnett, Mechanized molecular calculation—The POLYATOM system, Rev. Mod. Phys. 35, 571 (1963).CrossRefGoogle Scholar
  9. 9.
    I. G. Csizmadia, M. C. Harrison, J. W. Moskowitz, and B. T. Sutcliffe, Nonempirical LCAOMO-SCF-CI calculations on organic molecules with Gaussian-type functions. Part I. Introductory review and mathematical formalism, Theor. Chim. Acta 6, 191 (1966).CrossRefGoogle Scholar
  10. 10.
    T. D. Metzgar and J. E. Bloor, QCPE # 238 POLYATOM: Version II (IBM 360).Google Scholar
  11. 11.
    D. Goutier, R. Macaulay,. and A. J. Duke, QCPE # 241, PHANTOM: Ab initio Quantum chemical programs for CDC 6000 and 7000 series computers.Google Scholar
  12. 12.
    C. C. J. Roothaan, New developments in molecular orbital theory, Rev. Mod. Phys. 23, 69 (1951).CrossRefGoogle Scholar
  13. 13.
    C. C. J. Roothaan, Self-consistent field theory for open shells of electronic systems, Rev. Mod. Phys. 32, 179, (1960).CrossRefGoogle Scholar
  14. 14.
    H. Basch and D. Neumann, 1969, unpublished.Google Scholar
  15. 15.
    G. A. Segal, Calculation of wavefunctions for the excited states of polyatomic molecules, J. Chem. Phys. 53, 360 (1970).CrossRefGoogle Scholar
  16. 16.
    W. J. Hunt, T. H. Dunning, and W. A. Goddard II, The orthogonality constrained basis set expansion method for treating off-diagonal Lagrange multipliers in calculations of electronic wave functions, Chem. Phys. Lett. 3, 606 (1969).CrossRefGoogle Scholar
  17. 17.
    J. S. Brinkley, J. A. Pople, and P. A. Dobash, The calculation of spin-restricted singledeterminant wavefunctions, Mol. Phys. 28, 1423 (1974).CrossRefGoogle Scholar
  18. 18.
    J. A. Pople and R. K. Nesbet, Self-consistent orbitals for radicals, J. Chem. Phys. 22, 571 (1954).CrossRefGoogle Scholar
  19. 19.
    H. Eyring, J. Walter, and G. E. Kimball, Quantum Chemistry, J. Wiley and Sons, New York (1944).Google Scholar
  20. 20.
    R. S. Mulliken, Electronic populations analysis on LCAO-MO molecular wave functions. I., J. Chem. Phys. 23, 1833 (1955).CrossRefGoogle Scholar
  21. 21.
    I. Shavitt, The Gaussian function in calculations of statistical mechanics and quantum mechanics Methods Comput. Phys. 2, (1963).Google Scholar
  22. 22.
    E. Clemente and D. R. Davis, Electronic structure of large molecular systems, J. Comput. Phys.1, 223 (1966).CrossRefGoogle Scholar
  23. 23.
    H. Taketa, S. Huzinaga, and K. O-Ohata, Gaussian-expansion methods for molecular integrals, J. Phys. Soc. Jpn. 21, 2313 (1966).CrossRefGoogle Scholar
  24. 24.
    R. M. McWeeny, Symmetr—-An Introduction to Group Theory, Pergamon Press, Oxford (1963).Google Scholar
  25. 25.
    L. R. Kahn and W. A. Goddard III, Ab initio effective potentials for use in molecular calculations, J. Chem. Phys. 56, 2685 (1972).CrossRefGoogle Scholar
  26. 26.
    C. F. Melius, B. D. Olafson, and W. A. Goddard III, Fe and Ni ab initio effective potentials for use in molecular calculations, Chem. Phys. Lett. 28, 457 (1974).CrossRefGoogle Scholar
  27. 27.
    H. Basch, Dimerization of methylenes by their least motion, coplanar approach: A multiconfiguration self-consistent field study, J. Chem. Phys. 55, 1700 (1971).CrossRefGoogle Scholar
  28. 28.
    W. A. Goddard III, T. H. Dunning, Jr., W. J. Hunt, and P. J. Hay, Generalized valence bond description of bonding in lowlying states of molecules, Acc. Chem.-Res. 6, 368 (1973).CrossRefGoogle Scholar
  29. 29.
    L. C. Snyder and H. Basch, Molecular Wave Functions and Properties,). Wiley and Sons, New York (1972).Google Scholar
  30. 30.
    R. Macaulay and D. Goutier, PHANTOM: A chemical software system for doing ab initio Gaussian-type calculations, unpublished.Google Scholar
  31. 31.
    P. D. Dacre, On the use of symmetry in SCF calculations, Chem. Phys. Lett.7, 47 (1970).CrossRefGoogle Scholar
  32. 32.
    M. Elder, Use of molecular symmetry in SCF calculations, Int. J. Quanncm Chem. 7, 75 (1973).CrossRefGoogle Scholar
  33. 33.
    A. J. Duke, An alternative procedure for setting up Fock matrices from randomly ordered lists of electron interaction integrals, Chem. Phys. Lett. 13, 76 (1972).CrossRefGoogle Scholar
  34. 34.
    A Study of a National Center for Computation in Chemistry, National Academy of Sciences, Washington, D.C. (1974).Google Scholar
  35. 35.
    The Proposed National Resource for Computation in Chemistry, A User-Oriented Facility, National Academy of Sciences, Washington, D.C. (1975).Google Scholar

Copyright information

© Springer Science+Business Media New York 1977

Authors and Affiliations

  • Jules W. Moskowitz
    • 1
  • Lawrence C. Snyder
    • 2
  1. 1.Chemistry DepartmentNew York UniversityNew YorkUSA
  2. 2.Bell LaboratoriesMurray HillUSA

Personalised recommendations