Gaussian Basis Sets for Molecular Calculations

  • Thom. H. DunningJr.
  • P. Jeffrey Hay
Part of the Modern Theoretical Chemistry book series (MTC, volume 3)


In the following chapters the electronic structure of molecules will be discussed and the techniques of electronic structure calculations presented. Without exception the molecular electronic wave functions will be expanded in some convenient, but physically motivated, set of one-electron functions. Since the computational effort strongly depends on the number of expansion functions (see, e.g., the following chapters), the set of functions must be limited as far as possible without adversely affecting the accuracy of the wave functions. This chapter will discuss the choice of such functions for molecular calculations.


Polarization Function Rydberg State Primitive Function General Contraction Molecular Calculation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Heitler and F. London, Wechselwirkung neutraler Atome und homopolar Bindung nach der Quantenmechanik, Z. Phys. 44, 455–472 (1927).CrossRefGoogle Scholar
  2. 2.
    E. Clementi and D. L. Raimondi, Atomic screening constants from SCF functions, J. Chem. Phys. 38, 2686–2689 (1963); He-Kr.CrossRefGoogle Scholar
  3. 3.
    E. Clementi, D. L. Raimondi and W. P. Reinhardt, Atomic screening constants from SCF functions. II. Atoms with 37 to 86 electrons, J. Chem. Phys. 47, 1300–1307 (1967); Rb-Rn.CrossRefGoogle Scholar
  4. 4.
    S. Huzinaga and C. Arnau, Simple basis set for molecular wavefunctions containing first- and second-row atoms, J. Chem. Phys. 53, 451–452 (1970); He-Ar.CrossRefGoogle Scholar
  5. 5.
    E. Clementi, R. Matcha, and A. Veillard, Simple basis sets for molecular wavefunctions containing third-row atoms, J. Chem. Phys. 47, 1865–1866 (1967).CrossRefGoogle Scholar
  6. 6.
    S. C. Wang, The problem of the normal hydrogen molecule in the new quantum mechanics, Phys. Rev. 31, 579–586 (1928).CrossRefGoogle Scholar
  7. 7.
    N. Rosen, The normal state of the hydrogen molecule, Phys. Rev. 38, 2099–2114 (1931).CrossRefGoogle Scholar
  8. 8.
    C. A. Coulson and I. Fischer, Notes on the molecular orbital treatment of the hydrogen molecule, Philos. Mag. 40, 386–393 (1949).Google Scholar
  9. 9.
    W. A. Goddard III, Improved quantum theory of many-electron systems. II. The basic method, Phys. Rev. 157, 81–93 (1967).CrossRefGoogle Scholar
  10. 10.
    S. F. Boys, Electronic wavefunctions. I. A general method of calculation for the stationary states of any molecular system, Proc. R. Soc. London Ser. A, 200, 542–554 (1950).CrossRefGoogle Scholar
  11. 11.
    S. Huzinaga, Gaussian-type functions for polyatomic systems I, J. Chem. Phys. 42, 1293–1302 (1965).CrossRefGoogle Scholar
  12. 12.
    H. Preuss, Bemerkungen zum self-consistent-field-verfahren und zur Methode der Konfigurationenwechselwirkung in der Quantenchemie, Z. Naturforsch. 11, 823 (1956).Google Scholar
  13. 13.
    J. L. Whitten, Gaussian expansions of hydrogen atom wavefunctions, J. Chem. Phys. 39, 349 (1963).CrossRefGoogle Scholar
  14. 14.
    J. L. Whitten, Gaussian lobe function expansions of Hartree-Fock solutions for the first row atoms and ethylene, J. Chem. Phys. 44, 359 (1966).CrossRefGoogle Scholar
  15. 15.
    J. D. Petke, J. L. Whitten, and A. W. Douglas, Gaussian lobe function expansions of Hartree-Fock solutions for the second row atoms, J. Chem. Phys. 51, 256–262 (1969).CrossRefGoogle Scholar
  16. 16.
    S. Shih, R. J. Buenker, S. D. Peyerimhoff, and B. Wirsan, Comparison of Cartesian and lobe function Gaussian basis sets, Theor. Chim. Acta 18, 277–289 (1970).CrossRefGoogle Scholar
  17. 17..
    W. J. Hehre, R. F. Stewart, and J. A. Pople, Self-consistent molecular-orbital methods. I. Use of Gaussian expansions of Slater-type atomic orbitals, J. Chem. Phys. 51,2657–2664 (1969); H, Li-F.CrossRefGoogle Scholar
  18. 18.
    W. J. Hehre, R. Ditchfield, R. F. Stewart, and J. A. Pople, Self-consistent molecular-orbital methods. IV. Use of Gaussian expansions of Slater-type orbitals. Extension to second-row molecules, J. Chem. Phys. 52,2769–2773 (1970); Na-Ar.CrossRefGoogle Scholar
  19. 19.
    R. Ditchfield, W. J. Hehre, and J. A. Pople, Self-consistent molecular-orbital methods. IX. An extended Gaussian-type basis for molecular orbital studies of organic molecules, J. Chem. Phys. 54, 724–728 (1971); H, C-F.CrossRefGoogle Scholar
  20. 20.
    W. J. Hehre and J. A. Pople, Self-consistent molecular-orbital methods. XIII. An extended Gaussian-type basis for boron, J. Chem. Phys. 56, 4233–4234 (1972).CrossRefGoogle Scholar
  21. 21.
    R. F. Stewart, Small Gaussian expansions of Slater-type orbitals, J. Chem. Phys. 52, 431–438 (1970).CrossRefGoogle Scholar
  22. 22.
    R. C. Raffenetti, Optimal even-tempered Gaussian atomic orbital bases: First row atoms, Int. J. Quant. Chem. 9S,289–295 (1975).Google Scholar
  23. 23.
    R. D. Bardo and K. Ruedenberg, Even tempered atcmic orbitals III. Economic deployment of Gaussian primitives in expanding atomic SCF orbitals, J. Chem. Phys. 59, 5956–5965 (1973).CrossRefGoogle Scholar
  24. 24.
    T. H. Dunning, Jr., Gaussian basis functions for use in molecular calculations. I. Contraction of (9s5p) atomic basis sets for the first row atoms, J. Chem. Phys. 53, 2823–2833 (1970).CrossRefGoogle Scholar
  25. 25.
    R. C. Raffenetti, General contraction of Gaussian atomic orbitals: core, valence, polarization and diffuse basis sets; molecular integral evaluation, J. Chem. Phys.58, 4452–4458 (1973).CrossRefGoogle Scholar
  26. 26.
    S. Rothenberg and H. F. Schaefer III, Methane as a numerical experiment for polarization basis function selection, J. Chem. Phys. 54, 2765–2766 (1971).CrossRefGoogle Scholar
  27. 27.
    T. Vladimiroff, Comparison of the use of 3d polarization functions and bond functions in Gaussian Hartree—Fock calculations, J. Phys. Chem. 77, 1983–1985 (1973).CrossRefGoogle Scholar
  28. 28.
    S. Huzinaga, Approximate atomic wavefunctions. II., Department of Chemistry Technical Report, University of Alberta, Edmonton, Alberta, Canada 1971.Google Scholar

Copyright information

© Springer Science+Business Media New York 1977

Authors and Affiliations

  • Thom. H. DunningJr.
    • 1
  • P. Jeffrey Hay
    • 1
  1. 1.Theoretical Division, Los Alamos Scientific LaboratoryUniversity of CaliforniaLos AlamosUSA

Personalised recommendations