An Ode to Edward Chambers: Linkages of Transport, Calcium and pH to Sea Urchin Egg Arousal at Fertilization

  • David Epel


The events which surround fertilization and ultimately result in the beginning of the developmental program are referred to as “egg activation”, as attested by the title of this chapter. However, the definition of activation is “to make active” and the first item I discuss is whether this term is appropriate for what occurs at fertilization. I do not ask this to be pedantic or pugnacious, but because a search for a more appropriate term might lead to a better definition/description and understanding of fertilization.


Acid Release G6PD Activity Cortical Reaction Calcium Rise Cortical Granule Exocytosis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allemand, D., G. De Renzis, P. Payan, and J-P. Girard. 1986. Regulatory and energetic role of Na` in amino acid uptake by fertilized sea urchin eggs. Dev. Biol. 118: 19–27.PubMedCrossRefGoogle Scholar
  2. Allemand, D., B. Ciapa, and G. De Renzis. 1987a. Effect of cytochalasin B on the development of membrane transports in sea urchin eggs after fertilization. Dev. Growth & Differ. 29: 333–340.CrossRefGoogle Scholar
  3. Allemand, D., G. De Renzis, J-P. Girard, and P. Payan. 1987b. Activation of amino acid uptake at fertilization in the sea urchin egg. Requirement for proton compartmentalization during cytosolic alkalosis. Exp. Cell Res. 169: 169–177.PubMedCrossRefGoogle Scholar
  4. Begg, D., L. J. Rebhun, and H. Hyatt. 1982. Structural organization of actin in the sea urchin egg cortex: microvillar elongation in the absence of actin bundle formation. J. Cell Biol. 93: 24–32.PubMedCrossRefGoogle Scholar
  5. Brooks, S. C. and E. L. Chambers. 1948. Penetration of radioactive phosphate into the eggs ofGoogle Scholar
  6. Strongylocentrotus purpuratus, S. franciscanus and Urechis caupo. Biol. Bull. 95:262–263. Brooks, S. C. and E. L. Chambers. 1954. The penetration of radioactive phosphate into marine eggs. Biol. Bull. 106:279–296.Google Scholar
  7. Byrd, W. and G. Perry. 1980. Cytochalasin B blocks sperm incorporation but allows activation of the sea urchin egg. Exp. Cell Res. 126: 333–342.PubMedCrossRefGoogle Scholar
  8. Carron, C. P. and F. J. Longo. 1982. Relation of cytoplasmic alkalinization to microvillarGoogle Scholar
  9. elongation and microfilament formation in the sea urchin egg. Dev. Biol. 89:128–137. Chambers, E. L. 1975. Na` is required for nuclear and cytoplasmic activation of sea urchin eggs by sperm and divalent ionophores. J. Cell Biol. 67:60a.Google Scholar
  10. Chambers, E. L. 1976, Na’ is essential for activation of the inseminated sea urchin egg. J. Exp. Zool. 197: 149–154.PubMedCrossRefGoogle Scholar
  11. Chambers, E. L. and R. Chambers. 1949. Ion exchanges and fertilization in echinoderm eggs. Am. Nat. 83: 269–284.CrossRefGoogle Scholar
  12. Chambers, E. L. and R. E. Henkley. 1979. Non-propagated cortical reaction induced by the divalent ionophore A23187 in eggs of the sea urchin, Lytechinus variegatus. Exp. Cell Res. 124: 441–446.CrossRefGoogle Scholar
  13. Chambers, E. L., B. C. Pressman, and B. Rose. 1974. The activation of sea urchin eggs by divalent ionophores A23187 and X-537A. Biochem. Biophys. Res. Commun. 60: 126–132.PubMedCrossRefGoogle Scholar
  14. Chambers, E. L. and W. E. White. 1949. The accumulation of phosphate and evidence for synthesis of adenosine triphosphate in the fertilized sea urchin egg. Biol. Bull. 97: 225–226.Google Scholar
  15. Chambers, E. L. and W. E. White. 1954. The accumulation of phosphate by fertilized sea urchin eggs. Biol. Bull. 106: 297–307.CrossRefGoogle Scholar
  16. Chambers, E. L. and A. H. Whiteley. 1966. Phosphate transport in fertilized sea urchin eggs. I. Kinetic aspects. J. Cell. Physiol. 68: 289–308.CrossRefGoogle Scholar
  17. Ciapa, B. and M. Whitaker. 1986. Two phases of inositol polyphosphate and diacylglycerol production at fertilization. FEBS Lett. 195: 247–351.CrossRefGoogle Scholar
  18. Ciapa, B., D. Allemand, P. Payan, and J. P. Girard. 1984. Sodium-potassium exchange in sea urchin egg. I. Kinetic and biochemical characterization at fertilization. J. Cell. Physiol. 121: 235–242.PubMedCrossRefGoogle Scholar
  19. Dayson, H. 1959. A Textbook of General Physiology. Little, Brown and Co., Boston.Google Scholar
  20. Dubé, F. and D. Epel. 1986. The relation between intracellular pH and rate of protein synthesis in sea urchin eggs and the existence of a pH-independent event triggered by ammonia. Exp. Cell Res. 162: 191–204.PubMedCrossRefGoogle Scholar
  21. Dubé, F., T. Schmidt, C. H. Johnson, and D. Epel. 1985. The hierarchy of requirements for an elevated intracellular pH during early development of sea urchin embryos. Cell 40: 657–666.PubMedCrossRefGoogle Scholar
  22. Dunphy, W. G. and J. W. Newport. 1988. Unraveling of mitotic control mechanisms. Cell 55: 925–928PubMedCrossRefGoogle Scholar
  23. Epel, D. 1972. Activation of an Nat-dependent amino acid transport system upon fertilization of sea urchin eggs. Exp. Cell Res. 72: 74–89.PubMedCrossRefGoogle Scholar
  24. Epel, D. 1980. Experimental analysis of the role of intracellular calcium in the activation of the sea urchin egg at fertilization p. 169–186. In: The Cell Surface: Mediator of Developmental Processes. ( S. Subtelny and N. K. Wessells (Eds.). Academic Press, New York.Google Scholar
  25. Epel, D. 1988. The role of Na`-H` exchange and intracellular pH changes in fertilization. In: Na`-H’ Exchange. S. Grinstein (Ed.) CRC Press, Boca Raton. ( In press ).Google Scholar
  26. Epel, D. and F. Dubé. 1987. Intracellular pH and cell proliferation p. 364–394. In: Control of Animal Cell Proliferation. A. Boynton and H. L. Leffert (Eds.). Academic Press, Orlando.Google Scholar
  27. Epel, D. and J. D. Johnson. 1976. Reorganization of the sea urchin egg surface at fertilization and its relevance to the activation of development. p. 105–120. In: Biogenesis and Turnover of Membrane Molecules. J. S. Cook (Ed.) Raven Press, New York.Google Scholar
  28. Epel, D., C. Patton, R. W. Wallace, and W. Y. Cheung. 1981. Calmodulin activates NAD kinase of sea urchin eggs; an early event of fertilization. Cell 23: 543–549.PubMedCrossRefGoogle Scholar
  29. Epel, D., R. Steinhardt, T. Humphreys, and D. Mazia. 1974. An analysis of the partial metabolic derepression of sea urchin eggs by ammonia. The existence of independent pathways. Dev. Biol. 40: 245–255.PubMedCrossRefGoogle Scholar
  30. Grainger, J. L., M. M. Winkler, S. S. Shen, and R. A. Steinhardt. 1979. Intracellular pH controls protein synthesis rate in sea urchin egg and early embryo. Dev. Biol. 68: 396–406.PubMedCrossRefGoogle Scholar
  31. Hamaguchi, Y. and Y. Hiramoto. 1981. Activation of sea urchin eggs by microinjection of calcium buffers. Exp. Cell Res. 134: 171–179.PubMedCrossRefGoogle Scholar
  32. Ishihara, K. 1968. An analysis of acid polysaccharides produced at fertilization of sea urchin eggs. Exp. Cell Res. 51: 473–484.PubMedCrossRefGoogle Scholar
  33. Isono, N. 1963. Carbohydrate metabolism in sea urchin eggs IV. Intracellular localization of enzymes of the pentose phosphate cycle in unfertilized and fertilized eggs. J. Fac. Sci. Univ. Tokyo 10: 37–53.Google Scholar
  34. Isono, N. and I. Yasumasu. 1968. Pathways of carbohydrate breakdown in sea urchin eggs. Exp. Cell Res. 50: 616–626.PubMedCrossRefGoogle Scholar
  35. Johnson, C. H. and D. Epel. 1981. Intracellular pH of sea urchin eggs measured by the DMO method. J. Cell Biol. 89: 284–291.PubMedCrossRefGoogle Scholar
  36. Johnson, J. D., D. Epel, and M. Paul. 1976. Na`-H’ exchange is required for activation of sea urchin eggs after fertilization. Nature (Load.) 262: 661–664.CrossRefGoogle Scholar
  37. Lee, H. C. and D. Epel. 1983. Changes in intracellular acidic compartments in sea urchin eggs after activation. Dev. Biol. 98: 446–454.PubMedCrossRefGoogle Scholar
  38. Longo, F. J. 1978. Effects of cytochalasin B on sperm-egg interactions. Dev. Biol. 67:249–265. Mar, H. 1980. Radial cortical fibers and pronuclear migration in fertilized and artificially activated eggs in Lytechinus pictus. Dev. Biol. 78: 1–13.Google Scholar
  39. Nakazawa, T., K. Asami, R. Shoger, A. Fujiwara, and I. Yasumasu. 1970. Ca+2 uptake, H+ ejection and respiration in sea urchin eggs on fertilization. Exp. Cell Res. 65: 143–146.CrossRefGoogle Scholar
  40. Nishioka, D. and N. Cross. 1978. The role of external sodium in sea urchin fertilization. p. 403–414. In: Cell Reproduction. E. R. Dirksen, D. M. Prescott, and C. F. Fox (Eds.) Academic Press, New York.Google Scholar
  41. Paul, M. and D. Epel. 1975. Formation of fertilization acid by sea urchin eggs does not require specific cations. Exp. Cell Res. 94: 1–6.PubMedCrossRefGoogle Scholar
  42. Paul, M., J. D. Johnson, and D. Epel. 1976. Fertilization acid of sea urchin eggs is not a consequence of cortical granule exocytosis. J. Exp. Zool. 197: 127–133.PubMedCrossRefGoogle Scholar
  43. Piatigorsky, J. and A. H. Whiteley. 1965. A change in permeability and uptake of C14-uridine in response to fertilization in Strongylocentrotus purpuratus eggs. Biochim. Biophys. Acta 108: 404–418.PubMedCrossRefGoogle Scholar
  44. Poenie, M., J. Alderton, R. Tsien, and R. Steinhardt. 1985. Changes of free calcium levels with stages of the cell division cycle. Nature (Lond.) 315: 147–149.CrossRefGoogle Scholar
  45. Schatten, G., T. Bestor, R. Balczon, J. Henson, and H. Schatten. 1985. Intracellular pH shift leads to microtubule assembly and microtubule-mediated motility during sea urchin fertilization: correlations between elevated intracellular pH and microtubule disassembly. Eur. J. Cell Biol. 36: 116–127.PubMedGoogle Scholar
  46. Schneider, E. G. 1985. Activation of Nay-dependent transport at fertilization in the sea urchin: requirements of both an early event associated with exocytosis and a later event involving increased energy metabolism. Dev. Biol. 108: 152–163.PubMedCrossRefGoogle Scholar
  47. Shen, S. S. and R. A. Steinhardt. 1978. Direct measurement of intracellular pH during metabolic derepression of the sea urchin egg. Nature (Load.) 272: 253–254.CrossRefGoogle Scholar
  48. Shen, S. S. and R. A. Steinhardt. 1979. Intracellular pH and the sodium requirement at fertilization. Nature (Loud.) 282: 87–89.CrossRefGoogle Scholar
  49. Spudich, A., J. T. Wrenn, and N. K. Wessells. 1988. Unfertilized sea urchin eggs contain a discrete cortical shell of actin that is subdivided into two organizational states. Cell Motil. Cytoskeleton 9: 85–96.PubMedCrossRefGoogle Scholar
  50. Steinhardt, R. A. and D. Epel. 1974. Activation of sea urchin eggs by a calcium ionophore. Proc. Natl. Acad. Sci. USA 71: 1915–1919.PubMedCrossRefGoogle Scholar
  51. Steinhardt, R. A. and D. Mazia. 1973. Development of K+-conductance and membrane potentials in unfertilized sea urchin eggs after exposure to NH2OH. Nature (Lond.) 241: 400–401.CrossRefGoogle Scholar
  52. Steinhardt, R. A., R. Zucker, and G. Schatten. 1977. Intracellular calcium release at fertilization in the sea urchin egg. Der. Biol. 58: 185–196.Google Scholar
  53. Suprynowicz, F. A. and D. Mazia. 1985. Fluctuation of the Ca+2-sequestering activity of permeabilized sea urchin embryos during the cell cycle. Proc. Natl. Acad. Sci. USA 82: 2389–2393.PubMedCrossRefGoogle Scholar
  54. Swann, K. and M. J. Whitaker. 1986. The part played by inositol trisphosphate and calcium in the propagation of the fertilization wave in sea urchin eggs. J. Cell Biol. 103: 2333–2342.PubMedCrossRefGoogle Scholar
  55. Swann, K., B. Ciapa, and M. Whitaker. 1987. Cellular messengers and sea urchin egg activation. p. 45–69. In: Molecular Biology of Invertebrate Development. J. D. O’Connor (Ed.). Alan R. Liss, New York.Google Scholar
  56. Swezey, R. R. and D. Epel. 1986. Regulation of glucose-6-phosphate dehydrogenase activity in sea urchin eggs by reversible association with cell structural elements. J. Cell Biol. 103: 1509–1515.PubMedCrossRefGoogle Scholar
  57. Swezey, R. R. and D. Epel. 1988. Enzyme stimulation upon fertilization is revealed in electrically permeabilized sea urchin eggs. Proc. Natl. Acad. Sci. 85: 812–816.PubMedCrossRefGoogle Scholar
  58. Swezey, R. R., T. Schmidt, and D. Epel. 1987. Effects of hydrostatic pressure on actin assembly and initiation of amino acid transport upon fertilization of sea urchin eggs. p.95–111. In: Current Perspectives in High Pressure Biology. H. W. Jannasch, R. E. Marquis, and A. M. Zimmerman (Eds.). Academic Press, London.Google Scholar
  59. Turner, E. L., J. Hager, and B. M. Shapiro. 1988. Ovothinol replaces glutathione per’oxidaseas a hydrogen peroxide scavenger in sea urchin eggs. Science 242: 939–941.PubMedCrossRefGoogle Scholar
  60. Vacquier, V. D. 1981. Dynamic changes of the egg cortex. Dev. Biol. 84: 1–26.PubMedCrossRefGoogle Scholar
  61. Whitaker, M. J. and R. A. Steinhardt. 1981. The relation between the increase in reducednicotinamide nucleotides and the initiation of DNA synthesis in sea urchin eggs. Cell 25: 95–103.PubMedCrossRefGoogle Scholar
  62. Whitaker, M. J. and R. A. Steinhardt. 1985. Ionic signaling in the sea urchin egg at fertilization. p. 168–222. In: Biology of Fertilization, Vol. 3. C. B. Metz and A. Monroy (Eds.). Academic Press, Orlando.Google Scholar
  63. Whiteley, A. H. and E. L. Chambers. 1961. The differentiation of a phosphate transport mechanism in the fertilized egg of the sea urchin. p. 387–401. In: Symposium on Germ Cells and Development. Institut Intern. d’Embryologie and Fondazione A. Baselli.Google Scholar
  64. Winkler, M. M., E. Nelson, C. Lashbrook, and J. W. B. Hershey. 1982. 31P- NMR study of the activation of the sea urchin egg. Exp. Cell Res. 139: 217–222.Google Scholar
  65. Winkler, M. M., R. A. Steinhardt, J. L. Grainger, and L. Minning. 1980. Dual ionic controlsfor the activation of protein synthesis at fertilization. Nature (Loud.) 287: 558–560.CrossRefGoogle Scholar
  66. Zucker, R. S. and R. A. Steinhardt. 1978. Prevention of the cortical reaction in fertilized seaurchin eggs by injecting calcium-chelating ligands. Biochim. Biophys. Acta 541: 459–466.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • David Epel
    • 1
  1. 1.Department of Biological SciencesHopkins Marine Station of Stanford UniversityPacific GroveUSA

Personalised recommendations