Skip to main content

An Ode to Edward Chambers: Linkages of Transport, Calcium and pH to Sea Urchin Egg Arousal at Fertilization

  • Chapter
Mechanisms of Egg Activation

Abstract

The events which surround fertilization and ultimately result in the beginning of the developmental program are referred to as “egg activation”, as attested by the title of this chapter. However, the definition of activation is “to make active” and the first item I discuss is whether this term is appropriate for what occurs at fertilization. I do not ask this to be pedantic or pugnacious, but because a search for a more appropriate term might lead to a better definition/description and understanding of fertilization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allemand, D., G. De Renzis, P. Payan, and J-P. Girard. 1986. Regulatory and energetic role of Na` in amino acid uptake by fertilized sea urchin eggs. Dev. Biol. 118: 19–27.

    Article  PubMed  CAS  Google Scholar 

  • Allemand, D., B. Ciapa, and G. De Renzis. 1987a. Effect of cytochalasin B on the development of membrane transports in sea urchin eggs after fertilization. Dev. Growth & Differ. 29: 333–340.

    Article  CAS  Google Scholar 

  • Allemand, D., G. De Renzis, J-P. Girard, and P. Payan. 1987b. Activation of amino acid uptake at fertilization in the sea urchin egg. Requirement for proton compartmentalization during cytosolic alkalosis. Exp. Cell Res. 169: 169–177.

    Article  PubMed  CAS  Google Scholar 

  • Begg, D., L. J. Rebhun, and H. Hyatt. 1982. Structural organization of actin in the sea urchin egg cortex: microvillar elongation in the absence of actin bundle formation. J. Cell Biol. 93: 24–32.

    Article  PubMed  CAS  Google Scholar 

  • Brooks, S. C. and E. L. Chambers. 1948. Penetration of radioactive phosphate into the eggs of

    Google Scholar 

  • Strongylocentrotus purpuratus, S. franciscanus and Urechis caupo. Biol. Bull. 95:262–263. Brooks, S. C. and E. L. Chambers. 1954. The penetration of radioactive phosphate into marine eggs. Biol. Bull. 106:279–296.

    Google Scholar 

  • Byrd, W. and G. Perry. 1980. Cytochalasin B blocks sperm incorporation but allows activation of the sea urchin egg. Exp. Cell Res. 126: 333–342.

    Article  PubMed  CAS  Google Scholar 

  • Carron, C. P. and F. J. Longo. 1982. Relation of cytoplasmic alkalinization to microvillar

    Google Scholar 

  • elongation and microfilament formation in the sea urchin egg. Dev. Biol. 89:128–137. Chambers, E. L. 1975. Na` is required for nuclear and cytoplasmic activation of sea urchin eggs by sperm and divalent ionophores. J. Cell Biol. 67:60a.

    Google Scholar 

  • Chambers, E. L. 1976, Na’ is essential for activation of the inseminated sea urchin egg. J. Exp. Zool. 197: 149–154.

    Article  PubMed  CAS  Google Scholar 

  • Chambers, E. L. and R. Chambers. 1949. Ion exchanges and fertilization in echinoderm eggs. Am. Nat. 83: 269–284.

    Article  CAS  Google Scholar 

  • Chambers, E. L. and R. E. Henkley. 1979. Non-propagated cortical reaction induced by the divalent ionophore A23187 in eggs of the sea urchin, Lytechinus variegatus. Exp. Cell Res. 124: 441–446.

    Article  CAS  Google Scholar 

  • Chambers, E. L., B. C. Pressman, and B. Rose. 1974. The activation of sea urchin eggs by divalent ionophores A23187 and X-537A. Biochem. Biophys. Res. Commun. 60: 126–132.

    Article  PubMed  CAS  Google Scholar 

  • Chambers, E. L. and W. E. White. 1949. The accumulation of phosphate and evidence for synthesis of adenosine triphosphate in the fertilized sea urchin egg. Biol. Bull. 97: 225–226.

    Google Scholar 

  • Chambers, E. L. and W. E. White. 1954. The accumulation of phosphate by fertilized sea urchin eggs. Biol. Bull. 106: 297–307.

    Article  CAS  Google Scholar 

  • Chambers, E. L. and A. H. Whiteley. 1966. Phosphate transport in fertilized sea urchin eggs. I. Kinetic aspects. J. Cell. Physiol. 68: 289–308.

    Article  CAS  Google Scholar 

  • Ciapa, B. and M. Whitaker. 1986. Two phases of inositol polyphosphate and diacylglycerol production at fertilization. FEBS Lett. 195: 247–351.

    Article  Google Scholar 

  • Ciapa, B., D. Allemand, P. Payan, and J. P. Girard. 1984. Sodium-potassium exchange in sea urchin egg. I. Kinetic and biochemical characterization at fertilization. J. Cell. Physiol. 121: 235–242.

    Article  PubMed  CAS  Google Scholar 

  • Dayson, H. 1959. A Textbook of General Physiology. Little, Brown and Co., Boston.

    Google Scholar 

  • Dubé, F. and D. Epel. 1986. The relation between intracellular pH and rate of protein synthesis in sea urchin eggs and the existence of a pH-independent event triggered by ammonia. Exp. Cell Res. 162: 191–204.

    Article  PubMed  Google Scholar 

  • Dubé, F., T. Schmidt, C. H. Johnson, and D. Epel. 1985. The hierarchy of requirements for an elevated intracellular pH during early development of sea urchin embryos. Cell 40: 657–666.

    Article  PubMed  Google Scholar 

  • Dunphy, W. G. and J. W. Newport. 1988. Unraveling of mitotic control mechanisms. Cell 55: 925–928

    Article  PubMed  CAS  Google Scholar 

  • Epel, D. 1972. Activation of an Nat-dependent amino acid transport system upon fertilization of sea urchin eggs. Exp. Cell Res. 72: 74–89.

    Article  PubMed  CAS  Google Scholar 

  • Epel, D. 1980. Experimental analysis of the role of intracellular calcium in the activation of the sea urchin egg at fertilization p. 169–186. In: The Cell Surface: Mediator of Developmental Processes. ( S. Subtelny and N. K. Wessells (Eds.). Academic Press, New York.

    Google Scholar 

  • Epel, D. 1988. The role of Na`-H` exchange and intracellular pH changes in fertilization. In: Na`-H’ Exchange. S. Grinstein (Ed.) CRC Press, Boca Raton. ( In press ).

    Google Scholar 

  • Epel, D. and F. Dubé. 1987. Intracellular pH and cell proliferation p. 364–394. In: Control of Animal Cell Proliferation. A. Boynton and H. L. Leffert (Eds.). Academic Press, Orlando.

    Google Scholar 

  • Epel, D. and J. D. Johnson. 1976. Reorganization of the sea urchin egg surface at fertilization and its relevance to the activation of development. p. 105–120. In: Biogenesis and Turnover of Membrane Molecules. J. S. Cook (Ed.) Raven Press, New York.

    Google Scholar 

  • Epel, D., C. Patton, R. W. Wallace, and W. Y. Cheung. 1981. Calmodulin activates NAD kinase of sea urchin eggs; an early event of fertilization. Cell 23: 543–549.

    Article  PubMed  CAS  Google Scholar 

  • Epel, D., R. Steinhardt, T. Humphreys, and D. Mazia. 1974. An analysis of the partial metabolic derepression of sea urchin eggs by ammonia. The existence of independent pathways. Dev. Biol. 40: 245–255.

    Article  PubMed  CAS  Google Scholar 

  • Grainger, J. L., M. M. Winkler, S. S. Shen, and R. A. Steinhardt. 1979. Intracellular pH controls protein synthesis rate in sea urchin egg and early embryo. Dev. Biol. 68: 396–406.

    Article  PubMed  CAS  Google Scholar 

  • Hamaguchi, Y. and Y. Hiramoto. 1981. Activation of sea urchin eggs by microinjection of calcium buffers. Exp. Cell Res. 134: 171–179.

    Article  PubMed  CAS  Google Scholar 

  • Ishihara, K. 1968. An analysis of acid polysaccharides produced at fertilization of sea urchin eggs. Exp. Cell Res. 51: 473–484.

    Article  PubMed  CAS  Google Scholar 

  • Isono, N. 1963. Carbohydrate metabolism in sea urchin eggs IV. Intracellular localization of enzymes of the pentose phosphate cycle in unfertilized and fertilized eggs. J. Fac. Sci. Univ. Tokyo 10: 37–53.

    CAS  Google Scholar 

  • Isono, N. and I. Yasumasu. 1968. Pathways of carbohydrate breakdown in sea urchin eggs. Exp. Cell Res. 50: 616–626.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, C. H. and D. Epel. 1981. Intracellular pH of sea urchin eggs measured by the DMO method. J. Cell Biol. 89: 284–291.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, J. D., D. Epel, and M. Paul. 1976. Na`-H’ exchange is required for activation of sea urchin eggs after fertilization. Nature (Load.) 262: 661–664.

    Article  CAS  Google Scholar 

  • Lee, H. C. and D. Epel. 1983. Changes in intracellular acidic compartments in sea urchin eggs after activation. Dev. Biol. 98: 446–454.

    Article  PubMed  CAS  Google Scholar 

  • Longo, F. J. 1978. Effects of cytochalasin B on sperm-egg interactions. Dev. Biol. 67:249–265. Mar, H. 1980. Radial cortical fibers and pronuclear migration in fertilized and artificially activated eggs in Lytechinus pictus. Dev. Biol. 78: 1–13.

    Google Scholar 

  • Nakazawa, T., K. Asami, R. Shoger, A. Fujiwara, and I. Yasumasu. 1970. Ca+2 uptake, H+ ejection and respiration in sea urchin eggs on fertilization. Exp. Cell Res. 65: 143–146.

    Article  Google Scholar 

  • Nishioka, D. and N. Cross. 1978. The role of external sodium in sea urchin fertilization. p. 403–414. In: Cell Reproduction. E. R. Dirksen, D. M. Prescott, and C. F. Fox (Eds.) Academic Press, New York.

    Google Scholar 

  • Paul, M. and D. Epel. 1975. Formation of fertilization acid by sea urchin eggs does not require specific cations. Exp. Cell Res. 94: 1–6.

    Article  PubMed  CAS  Google Scholar 

  • Paul, M., J. D. Johnson, and D. Epel. 1976. Fertilization acid of sea urchin eggs is not a consequence of cortical granule exocytosis. J. Exp. Zool. 197: 127–133.

    Article  PubMed  CAS  Google Scholar 

  • Piatigorsky, J. and A. H. Whiteley. 1965. A change in permeability and uptake of C14-uridine in response to fertilization in Strongylocentrotus purpuratus eggs. Biochim. Biophys. Acta 108: 404–418.

    Article  PubMed  CAS  Google Scholar 

  • Poenie, M., J. Alderton, R. Tsien, and R. Steinhardt. 1985. Changes of free calcium levels with stages of the cell division cycle. Nature (Lond.) 315: 147–149.

    Article  CAS  Google Scholar 

  • Schatten, G., T. Bestor, R. Balczon, J. Henson, and H. Schatten. 1985. Intracellular pH shift leads to microtubule assembly and microtubule-mediated motility during sea urchin fertilization: correlations between elevated intracellular pH and microtubule disassembly. Eur. J. Cell Biol. 36: 116–127.

    PubMed  CAS  Google Scholar 

  • Schneider, E. G. 1985. Activation of Nay-dependent transport at fertilization in the sea urchin: requirements of both an early event associated with exocytosis and a later event involving increased energy metabolism. Dev. Biol. 108: 152–163.

    Article  PubMed  CAS  Google Scholar 

  • Shen, S. S. and R. A. Steinhardt. 1978. Direct measurement of intracellular pH during metabolic derepression of the sea urchin egg. Nature (Load.) 272: 253–254.

    Article  CAS  Google Scholar 

  • Shen, S. S. and R. A. Steinhardt. 1979. Intracellular pH and the sodium requirement at fertilization. Nature (Loud.) 282: 87–89.

    Article  CAS  Google Scholar 

  • Spudich, A., J. T. Wrenn, and N. K. Wessells. 1988. Unfertilized sea urchin eggs contain a discrete cortical shell of actin that is subdivided into two organizational states. Cell Motil. Cytoskeleton 9: 85–96.

    Article  PubMed  CAS  Google Scholar 

  • Steinhardt, R. A. and D. Epel. 1974. Activation of sea urchin eggs by a calcium ionophore. Proc. Natl. Acad. Sci. USA 71: 1915–1919.

    Article  PubMed  CAS  Google Scholar 

  • Steinhardt, R. A. and D. Mazia. 1973. Development of K+-conductance and membrane potentials in unfertilized sea urchin eggs after exposure to NH2OH. Nature (Lond.) 241: 400–401.

    Article  CAS  Google Scholar 

  • Steinhardt, R. A., R. Zucker, and G. Schatten. 1977. Intracellular calcium release at fertilization in the sea urchin egg. Der. Biol. 58: 185–196.

    CAS  Google Scholar 

  • Suprynowicz, F. A. and D. Mazia. 1985. Fluctuation of the Ca+2-sequestering activity of permeabilized sea urchin embryos during the cell cycle. Proc. Natl. Acad. Sci. USA 82: 2389–2393.

    Article  PubMed  CAS  Google Scholar 

  • Swann, K. and M. J. Whitaker. 1986. The part played by inositol trisphosphate and calcium in the propagation of the fertilization wave in sea urchin eggs. J. Cell Biol. 103: 2333–2342.

    Article  PubMed  CAS  Google Scholar 

  • Swann, K., B. Ciapa, and M. Whitaker. 1987. Cellular messengers and sea urchin egg activation. p. 45–69. In: Molecular Biology of Invertebrate Development. J. D. O’Connor (Ed.). Alan R. Liss, New York.

    Google Scholar 

  • Swezey, R. R. and D. Epel. 1986. Regulation of glucose-6-phosphate dehydrogenase activity in sea urchin eggs by reversible association with cell structural elements. J. Cell Biol. 103: 1509–1515.

    Article  PubMed  CAS  Google Scholar 

  • Swezey, R. R. and D. Epel. 1988. Enzyme stimulation upon fertilization is revealed in electrically permeabilized sea urchin eggs. Proc. Natl. Acad. Sci. 85: 812–816.

    Article  PubMed  CAS  Google Scholar 

  • Swezey, R. R., T. Schmidt, and D. Epel. 1987. Effects of hydrostatic pressure on actin assembly and initiation of amino acid transport upon fertilization of sea urchin eggs. p.95–111. In: Current Perspectives in High Pressure Biology. H. W. Jannasch, R. E. Marquis, and A. M. Zimmerman (Eds.). Academic Press, London.

    Google Scholar 

  • Turner, E. L., J. Hager, and B. M. Shapiro. 1988. Ovothinol replaces glutathione per’oxidaseas a hydrogen peroxide scavenger in sea urchin eggs. Science 242: 939–941.

    Article  PubMed  CAS  Google Scholar 

  • Vacquier, V. D. 1981. Dynamic changes of the egg cortex. Dev. Biol. 84: 1–26.

    Article  PubMed  CAS  Google Scholar 

  • Whitaker, M. J. and R. A. Steinhardt. 1981. The relation between the increase in reducednicotinamide nucleotides and the initiation of DNA synthesis in sea urchin eggs. Cell 25: 95–103.

    Article  PubMed  CAS  Google Scholar 

  • Whitaker, M. J. and R. A. Steinhardt. 1985. Ionic signaling in the sea urchin egg at fertilization. p. 168–222. In: Biology of Fertilization, Vol. 3. C. B. Metz and A. Monroy (Eds.). Academic Press, Orlando.

    Google Scholar 

  • Whiteley, A. H. and E. L. Chambers. 1961. The differentiation of a phosphate transport mechanism in the fertilized egg of the sea urchin. p. 387–401. In: Symposium on Germ Cells and Development. Institut Intern. d’Embryologie and Fondazione A. Baselli.

    Google Scholar 

  • Winkler, M. M., E. Nelson, C. Lashbrook, and J. W. B. Hershey. 1982. 31P- NMR study of the activation of the sea urchin egg. Exp. Cell Res. 139: 217–222.

    Google Scholar 

  • Winkler, M. M., R. A. Steinhardt, J. L. Grainger, and L. Minning. 1980. Dual ionic controlsfor the activation of protein synthesis at fertilization. Nature (Loud.) 287: 558–560.

    Article  CAS  Google Scholar 

  • Zucker, R. S. and R. A. Steinhardt. 1978. Prevention of the cortical reaction in fertilized seaurchin eggs by injecting calcium-chelating ligands. Biochim. Biophys. Acta 541: 459–466.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Science+Business Media New York

About this chapter

Cite this chapter

Epel, D. (1989). An Ode to Edward Chambers: Linkages of Transport, Calcium and pH to Sea Urchin Egg Arousal at Fertilization. In: Nuccitelli, R., Cherr, G.N., Clark, W.H. (eds) Mechanisms of Egg Activation. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0881-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0881-3_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0883-7

  • Online ISBN: 978-1-4757-0881-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics