Advertisement

Signal Transduction of Sperm-Egg Interaction Causing Periodic Calcium Transients in Hamster Eggs

  • Shun-ichi Miyazaki

Abstract

The study of fertilization or egg activation has a long history, over a century, and experiments have been done mainly using sea urchin gametes, as shown in this book. The study of mammals was much delayed because of the difficulty in maintaining and fertilizing the gametes in vitro. In these last 30 years, these problems have been overcome through advances in cell culture techniques, and extensive studies have now been completed on mammalian fertilization, based on microscopic and morphological observations. However, because of the limitation in the number of collectable eggs, some difficulties still remain for further studies based on techniques such as biochemical analysis.

Keywords

Inositol Trisphosphate Fertilization Potential Flagellar Motion Constant Current Pulse Hyperpolarizing Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Austin, C. R. 1961. Fertilization of mammalian eggs in vitro. Int. Rev. Cytol. 12: 337–359.CrossRefGoogle Scholar
  2. Bedford, J. M., H. D. M. Moore, and L. E. Franklin. 1979. Significance of the equatorial segment of the acrosome of the spermatozoa in eutherian mammals. Exp. Cell Res. 119: 119–126.PubMedCrossRefGoogle Scholar
  3. Berridge, M. J. and R. F. Irvine. 1984. Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature (Lond.) 312: 315–321.CrossRefGoogle Scholar
  4. Biggers, J. D., W. K. Whitten, and D. G. Whittingham. 1971. The culture of mouse embryo in vitro. p. 86–116. In: Methods in Mammalian Embryology. J. C. Daniel (Ed.). Freeman, San Francisco.Google Scholar
  5. Busa, W. B., J. E. Ferguson, S. K. Joseph, J. R. Williamson, and R. Nuccitelli. 1985. Activation of frog (Xenopus laevis) egg by inositol trisphosphate. I. Characterization of Ca’ release from intracellular stores. J. Cell Biol. 101: 677–682.PubMedCrossRefGoogle Scholar
  6. Busa, W. B. and R. Nuccitelli. 1985. An elevated free cytosolic Ca wave follows fertilization in egg of the frog, Xenopus laevis. J. Cell Biol. 100: 1325–1329.CrossRefGoogle Scholar
  7. Crossley, I., K. Swann, E. Chambers, and M. Whitaker. 1988. Activation of sea urchin eggs by inositol phosphates is independent of external calcium. Biochem. J. 252: 257–262.PubMedGoogle Scholar
  8. Cuthbertson, K. S. R. and P. H. Cobbold. 1985. Phorbol ester and sperm activate mouse oocytes by inducing sustained oscillations in cell Ca. Nature (Lond.). 316: 541–542.CrossRefGoogle Scholar
  9. Cuthbertson, K. S. R., D. G. Whittingham, and P. H. Cobbold. 1981. Free Ca’ increases in exponential phases during mouse oocyte activation. Nature (Lond.) 294: 754–757.CrossRefGoogle Scholar
  10. Eisen, A., D. P. Kiehart, S. J. Wieland, and G. T. Reynolds. 1984. Temporal sequence and spatial distribution of early events of fertilization in single sea urchin egg. J. Cell Biol. 99: 1647–1654.PubMedCrossRefGoogle Scholar
  11. Endo, M. 1977. Calcium release from the sarcoplasmic reticulum. Physiol. Rev. 57:71–108. Epel, D. 1978. Mechanisms of activation of sperm and egg during fertilization of sea urchin gametes. Curr. Top. Dev. Biol. 12: 185–246.Google Scholar
  12. Georgiou, P., C. Bountra, A. McNiven, and C. R. House. 1987. The effect of lanthanum, quercetin and dinitrophenol on calcium-evoked electrical responses in hamster eggs. Q. J. Exp. Physiol. 72: 227–241.PubMedGoogle Scholar
  13. Georgiou, P., C. R. House, A. I. McNiven, and S. Yoshida. 1988. On the mechanism of a pH-induced rise in membrane potassium conductance in hamster eggs. J. Physiol. (Lond.) 402: 121–138.Google Scholar
  14. Gilkey, J. C., L. F. Jaffe, E. B. Ridgeway, and G. T. Reynolds. 1978. A free calcium wave traverses the activating egg of the medaka, Ory.-ias latipes. J. Cell Biol. 76: 448–466.CrossRefGoogle Scholar
  15. Hagiwara, S. and L. A. Jaffe. 1979. Electrical properties of egg cell membranes. 11111714. Rev. Biophys. Bioeng. 8: 385–416.CrossRefGoogle Scholar
  16. Hiramoto, Y. 1961. Microinjection of the live spermatozoa into sea urchin eggs. Exp. Cell Res. 27: 416–426.CrossRefGoogle Scholar
  17. Igusa, Y. and S. Miyazaki. 1983. Effects of altered extracellular and intracellular calcium concentration on hyperpolarizing responses of the hamster egg. J.Physiol. ( Lond. ) 340: 611–632.Google Scholar
  18. Igusa, Y. and S. Miyazaki. 1986. Periodic increase of cytoplasmic calcium in fertilized hamster eggs measured with calcium-sensitive electrodes. J. Physiol. (Lond.) 377: 193–205.Google Scholar
  19. Igusa, Y., S. Miyazaki and N. Yamashita. 1983. Periodic hyperpolarizing responses in hamster and mouse eggs fertilized with mouse sperm. J. Physiol. (Land.) 340: 633–647.Google Scholar
  20. Irvine, R. F. and R. M. Moor. 1986. Micro-injection of inositol 1,3,4,5-tetrakisphosphate activates sea urchin eggs by a mechanism dependent on external Ca. Biochem. J. 240: 917–920.PubMedGoogle Scholar
  21. Irvine, R. F. and R. M. Moor. 1987. Inositol (1,3,4,5) tetrakisphosphate-induced activation of sea urchin eggs requires the presence of inositol trisphosphate. Biochem. Biophys. Res. Commun. 146: 284–290.PubMedCrossRefGoogle Scholar
  22. Jaffe, L. A., A. P. Sharp, and D. P. Wolf. 1983. Absence of an electrical polyspermy block in the mouse. Dev. Biol. 96: 317–323.PubMedCrossRefGoogle Scholar
  23. Jaffe, L. F. 1985. The role of calcium explosions, waves and pulses in activating eggs. p. 127165. In: Biology of FertilLation. C. B. Metz and A. Monroy (Eds.). Academic Press, New York.Google Scholar
  24. Kishimoto, T. 1986. Microinjection and cytoplasmic transfer in starfish oocytes. Methods Cell Biol. 27: 379–394.PubMedCrossRefGoogle Scholar
  25. Kubota, H. Y., Y. Yoshimoto, M. Yoneda, and Y. Hiramoto. 1986. Free calcium wave upon activation in Xenopus eggs. Dev. Biol. 119: 129–136.CrossRefGoogle Scholar
  26. Martin, T. F., D. O. Lucas, S. M. Bajjalieh, and J. A. Kowalchyk. 1986. Thyrotropin-releasing hormone activates a Ca’-dependent polyphosphoinositide phosphodiesterase in permeable GH, cells. J. Biol. Chem. 261: 2918–2927.PubMedGoogle Scholar
  27. McCulloh, D. H., C. E. Rexroad, Jr., and H. Levitan. 1983. Insemination of rabbit eggs is associated with slow depolarization and repetitive diphasic membrane potentials. Dev. Biol. 95: 372–377.PubMedCrossRefGoogle Scholar
  28. Merritt, J. E., C. W. Taylor, R. P. Rubin, and J. W. Putney, Jr. 1986. Evidence suggesting that a novel guanine nucleotide regulatory protein couples receptors to phospholipase C in exocrine pancreas. Biochem. J. 236: 337–343.PubMedGoogle Scholar
  29. Miyazaki, S. 1983. Periodic hyperpolarizations in fertilized hamster eggs: possible linkage of Ca influx to intracellular Ca release. p. 219–231. In: The Physiology of Excitable Cells. A. Grinnell and W. J. Moody, Jr. (Eds.). Alan R. Liss Inc., New York.Google Scholar
  30. Miyazaki, S. 1988a. Inositol 1,4,5-trisphosphate-induced calcium release and guanine nucleotide-binding protein-mediated periodic calcium rises in golden hamster eggs. J. Cell Biol. 106: 345–354.PubMedCrossRefGoogle Scholar
  31. Miyazaki, S. 1988b. Fertilization potential and calcium transients in mammalian eggs. Dev. Growth & Differ. 30: 603–610.CrossRefGoogle Scholar
  32. Miyazaki, S., N. Hashimoto, Y. Yoshimoto, T. Kishimoto, Y. Igusa, and Y. Hiramoto. 1986. Temporal and spatial dynamics of the periodic increase in intracellular free calcium at fertilization of golden hamster eggs. Dew. Biol. 118: 259–267.CrossRefGoogle Scholar
  33. Miyazaki, S. and Y. Igusa. 1981a. Fertilization potential in golden hamster eggs consists of recurring hyperpolarizations. Nature (Lond.) 290: 702–704.CrossRefGoogle Scholar
  34. Miyazaki, S. and Y. Igusa. 1981b. Ca-dependent action potential and Ca-induced fertilization potential in golden hamster eggs. p. 305–311. In: The Mechanism of Gated Calcium Transport Across Biological Membranes. S. T. Ohnishi and M. Endo (Eds.). Academic Press, New York.Google Scholar
  35. Miyazaki, S. and Y. Igusa. 1982. Ca-mediated activation of a K current at fertilization of golden hamster eggs. Proc. Natl. Acad. Sci. USA. 79: 931–935.PubMedCrossRefGoogle Scholar
  36. Miyazaki, S., Y. Igusa and K. Swann. 1988. Involvement of GTP-binding protein in signal transduction of sperm-egg interaction at fertilization of hamster eggs. J. Physiol. Soc. Japan 50: 390.Google Scholar
  37. Neer, E. J. and D. E. Clapham. 1988. Roles of G protein subunits in transmembrane signalling. Nature (Lond.) 333: 129–134.CrossRefGoogle Scholar
  38. Poenie, M., J. Aldertson, R. Y. Tsien, and R. A. Steinhardt. 1985. Changes of free calcium levels with stages of the cell division cycle. Nature (Load.) 315: 147–149.CrossRefGoogle Scholar
  39. Steinhardt, R., R. Zucker, and G. Schatten. 1977. Intracellular calcium release at fertilization of the sea urchin egg. Dev. Biol. 58: 185–196.PubMedCrossRefGoogle Scholar
  40. Strong, J. A., A. P. Fox, R. W. Tsien, and L. K. Kaczmare. 1987. Stimulation of protein kinase C recruits covert calcium channels in Aplysia bag cell neurons. Nature (Lond.) 325: 714–717.CrossRefGoogle Scholar
  41. Stryer, L. and H. R. Bourne. 1986. G proteins: a family of signal transducers. Annu. Rev. Cell Biol. 2: 391–419.PubMedCrossRefGoogle Scholar
  42. Swann, K., B. Ciapa, and M. J. Whitaker. 1987. Cellular messengers and sea urchin egg activation. p. 45–69. In: Morecular Biology of Invertebrate Development. A. O’Conner (Ed.). Alan R. Liss, New York.Google Scholar
  43. Swann, K. and W. Whitaker. 1986. The part played by inositol trisphosphate and calcium in the propagation of the fertilization wave in sea urchin eggs. J. Cell Biol. 103: 2333–2342.PubMedCrossRefGoogle Scholar
  44. Turner, P. R. and L. A. Jaffe. 1989. G proteins and the regulation of oocyte maturation and fertilization. p. 297–318. In: The Cell Biology of Fertilization. G. Schatten and H. Schatten (Eds.). Academic Press, Orlando. ( In Press ).Google Scholar
  45. Turner, P. R., L. A. Jaffe, and A. Fein. 1986. Regulation of cortical vesicle exocytosis in sea urchin egg by inositol 1,4,5- trisphosphate and GTP-binding protein. J. Cell Biol. 102: 70–76.PubMedCrossRefGoogle Scholar
  46. Whitaker, M. J. and R. F. Irvine. 1984. Inositol 1,4,5-trisphosphate microinjection activates sea urchin eggs. Nature (Lond.) 312: 636–639.CrossRefGoogle Scholar
  47. Yanagimachi, R. 1969. In vitro capacitation of hamster spermatozoa by follicular fluid. J. Reprod. Fertil. 18: 275–286.PubMedCrossRefGoogle Scholar
  48. Yanagimachi, R. 1970. In vitro capacitation of golden hamster spermatozoa by homologous and heterologus blood sera. Biol. Reprod. 3: 147–153.PubMedGoogle Scholar
  49. Yanagimachi, R. 1978. Sperm-egg association in mammals. Curr. Top. Dev. Biol. 12:83–105. Yanagimachi, R. 1988. Mammarian fertilization. p.135–185. In: The Physiology of Reproduction. E. Knobil and J. Neill (Eds.). Raven Press, New York.Google Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Shun-ichi Miyazaki
    • 1
  1. 1.Department of PhysiologyTokyo Women’s Medical CollegeKawada-cho, Shinjuku-ku, Tokyo, 162Japan

Personalised recommendations