Advertisement

Aspects of Transport in Liquid Metals

  • M. P. Tosi
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 17)

Abstract

The assumption of weak electron-ion interactions in a ‘simple’ liquid metal has led, on the one hand, to the calculation of electronic transport properties via the weak scattering formalism (Ziman (1) , Baym (2)) and, on the other, to the introduction of effective pair interactions between the ions in which the electrons enter through the electron-gas dielectric function. Several properties of simple liquid metals can be understood on this basis. For example, the effective-interaction model appears to account for important features of the neutron inelastic scattering spectrum of a system such as liquid rubidium (Rahman (3)), just as it gives a good account of phonons in the solid alkali metals (Price et al(4)).

Keywords

Liquid Metal Functional Derivative Dynamic Structure Factor Lithium Isotope Isotopic Mixture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ziman, J.M. (1961). Phil. Mag. 6, 1013.ADSMATHCrossRefGoogle Scholar
  2. 2.
    Baym, G. (1964). Phys. Rev. 135, A1691.ADSCrossRefGoogle Scholar
  3. 3.
    Rahman, A. (1974). Phys. Rev. Letters 32, 52ADSCrossRefGoogle Scholar
  4. 3.
    Rahman, A. (1974)Phys. Rev. A9, 1667.ADSCrossRefGoogle Scholar
  5. 4.
    Price, D.L., Singwi, K.S. and Tosi, M.P. (1970). Phys.Rev. B2, 2983.ADSCrossRefGoogle Scholar
  6. 5.
    Egelstaff, P.A., March, N.H. and McGill, N.C. (1974). Canad. J. Phys. 52, 1651.ADSGoogle Scholar
  7. 6.
    Platzman, P.M. and Eisenberger, P. (1974). Phys. Rev. Letters 33, 152.ADSCrossRefGoogle Scholar
  8. 7.
    Watabe, M. and Hasegawa, H. (1973). Second Int. Conf. on Liquid Metals (Taylor and Francis, London).Google Scholar
  9. 8.
    Chihara, J. (1973). Second Int. Confon Liquid Metals (Taylor and Francis, London).Google Scholar
  10. 9.
    Vashishta, P., Bhattacharyya, P. and Singwi, K.S. (1974). Phys. Rev. B10, 5108.ADSCrossRefGoogle Scholar
  11. 10.
    Rousseau, J.S., Stoddart, J.C. and March, N.H. (1972). J. Phys. C5, L175.ADSGoogle Scholar
  12. 11.
    Jones, W. (1974). J. Phys. C7, 3357.ADSGoogle Scholar
  13. 12.
    Nyquist, H. (1928). Phys. Rev. 32, 110.ADSCrossRefGoogle Scholar
  14. 13.
    Mori, H. (1965). Progr. Theor. Phys. 33, 423.ADSMATHCrossRefGoogle Scholar
  15. 14.
    Kubo, R. (1966). Rep. Progr. Phys. 29, 25.CrossRefGoogle Scholar
  16. 15.
    Copley, J.R.D. and Lovesey, S.L. (1975). Rep. Progr. Phys., in the press.Google Scholar
  17. 16.
    Ban, N.T., Randall, C.M. and Montgomery, D.J. (1962). Phys. Rev. 128, 6.ADSCrossRefGoogle Scholar
  18. 17.
    March, N.H. and Tosi, M.P. (1973). Ann. Phys. (NY) 81, 414.ADSCrossRefGoogle Scholar
  19. 18.
    Parrinello, M., Tosi, M.P. and March, N.H. (1975). Lett. N. Cimento, in the press.Google Scholar
  20. 19.
    Tosi, M.P., Parrinello, M. and March, N.H. (1974). N. Cimento 23B, 135.ADSCrossRefGoogle Scholar
  21. 20.
    Kadanoff, L.P. and Baym, G. (1962). Quantum Statistical Mechanics (Benjamin, New York)MATHGoogle Scholar
  22. 21.
    Kadanoff, L.P. and Martin, P.C. (1963). Ann. Phys.(NY) 24, 419.MathSciNetADSMATHCrossRefGoogle Scholar
  23. 22.
    Singwi, K.S., Sjölander, A., Tosi, M.P. and Land, R.H. (1970). Phys. Rev. B1, 1044.ADSGoogle Scholar
  24. 23.
    Pines, D. and Nozières, P. (1966). The theory of Quantum Liquids (Benjamin, New York)Google Scholar
  25. 24.
    Mori, H. (1965). Progr. Theor. Phys. 34, 499CrossRefGoogle Scholar
  26. 25.
    Goodman, B. and Sjölander, A. (1973). Phys. Rev. B8, 200.ADSCrossRefGoogle Scholar
  27. 26.
    Abramo, M.C. and Parrinello, M. (1975). Lett. N. Cimento, in the press.Google Scholar
  28. 27.
    Bohm, D. and Pines, D. (1953). Phys. Rev. 92, 609.MathSciNetADSMATHCrossRefGoogle Scholar
  29. 28.
    Hubbard, J. (1957). Proc. Roy. Soc. A243, 336.MathSciNetADSGoogle Scholar
  30. 29.
    Singwi, K.S., Tosi, M.P., Land, R.H. and Sjölander, A. (1968). Phys. Rev. 176, 589.ADSCrossRefGoogle Scholar
  31. 30.
    Vashishta, P. and Singwi, K.S. (1972). Phys. Rev. B6, 875.ADSCrossRefGoogle Scholar
  32. 31.
    Fröhlich, H. (1967). Physica 37, 215.ADSCrossRefGoogle Scholar
  33. 32.
    Faber, T.C. (1972). An Introduction to the Theory of Liquid Metals (Cambridge).Google Scholar
  34. 33.
    Epstein, S.G. and Dickey, J.M. (1970). Phys. Rev. B1, 2442.ADSGoogle Scholar
  35. 33.
    Epstein, S.G. and Dickey, J.M. (1970). Phys. Rev. B1, 2442.ADSCrossRefGoogle Scholar
  36. 35.
    Bhatia, A.B., Thornton, D.E. and March, N.H. (1975). J. Phys. Chem. Liquids, in the press.Google Scholar
  37. 36.
    Dugdale, J.S., Gugan, D. and Okumura, K. (1961). Proc. Roy. Soc. A263, 407.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1976

Authors and Affiliations

  • M. P. Tosi
    • 1
  1. 1.Istituto di Fisica dell‘Universita’ e GNSM del CNRRomaItaly

Personalised recommendations