Advertisement

Some Recent Findings in Noise Theory and their Implications for Transport Processes

  • K. K. Thornber
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 17)

Abstract

We review the Langevin approach, the neglect of correlations, microscopic sources of noise and their macroscopic approximations, the eindrif method and spontaneous and induced fluctuations, dif-fusion noise, and the Einstein relation and effective temperatures. By focusing on the underlying physics, we stress the necessity of carefully checking results of noise theories based on mathematical or engineering models. The eindrif method, which provides a means of modelling noise based on the actual physical processes which give rise to the noise, is outlined in some detail. We also indicate how the fluctuating forces which play such a natural role in classical noise theory can be applied to quantum-mechanical treatments of transport.

Keywords

Thermal Equilibrium Diffusion Constant Effective Temperature Internal Noise Einstein Relation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Einstein, Ann. d. Phys. (4) 17, 549 (1905).ADSMATHCrossRefGoogle Scholar
  2. 2.
    H. B. Callen and T. A. Welton, Phys. Rev. 83, 34 (1951).MathSciNetADSMATHCrossRefGoogle Scholar
  3. 3.
    H. B. Callen, Phys. Rev. 111, 367 (1958).MathSciNetADSMATHCrossRefGoogle Scholar
  4. 4.
    W. Bernard and H. B. Callen, Rev. Mod. Phys. 31, 1017 (1959).MathSciNetADSMATHCrossRefGoogle Scholar
  5. 5.
    H. B. Callen, in D. ter Haar, ed., Fluctuation, Relaxation and Resonance in Magnetic Systems, New York: Plenum (1962).Google Scholar
  6. 6.
    K. K. Thornber, BSTJ 53, 1041 (1974).MathSciNetMATHGoogle Scholar
  7. 7.
    K. K. Thornber, Phys. Rev. B 9, 3489 (1974).ADSCrossRefGoogle Scholar
  8. 8.
    K. K. Thornber and R. P. Feynman, Phys. Rev. B 1, 4099 (1970);ADSCrossRefGoogle Scholar
  9. 8a.
    K. K. Thornber and R. P. Feynman Errata, Phys. Rev. B 4, 674 (1971).ADSGoogle Scholar
  10. 9.
    K. K. Thornber, Phys.Rev. B 3, 1929 (1971);ADSCrossRefGoogle Scholar
  11. 9a.
    K. K. Thornber, Errata Phys. Rev. B 4, 675 (1971).ADSCrossRefGoogle Scholar
  12. 10.
    K. K. Thornber, in J. T. Devreese, ed., Polarons in Ionic Crystals and Polar Semiconductors, Amsterdam: North-Holland (1972).Google Scholar
  13. 11.
    K. K. Thornber, Solid-State Electronics 17, 95 (1974).ADSCrossRefGoogle Scholar
  14. 12.
    K. K. Thornber, BSTJ 53, 1211 (1974).MathSciNetGoogle Scholar
  15. 13.
    K. K. Thornber, J. Appl. Phys. 46, 2781 (1975).ADSCrossRefGoogle Scholar
  16. 14.
    K. K. Thornber, in this volume.Google Scholar
  17. 15.
    K. K. Thornber, Proc. IEEE 60, 1113 (1972).CrossRefGoogle Scholar
  18. 16.
    K. K. Thornber and M. F. Tompsett, IEEE Trans. Elect. Dev. ED-20, 456 (1973).CrossRefGoogle Scholar
  19. 17.
    T. C. McGill, M-A. Nicolet and K. K. Thornber, Solid-State Electronics 17, 107 (1974).ADSCrossRefGoogle Scholar
  20. 18.
    K. K. Thornber, T. C. McGill and M-A. Nicolet, Solid-State Electronics 17, 587 (1974).ADSCrossRefGoogle Scholar
  21. 19.
    P. Langevin, Comnpt. Rend. 146, 503 (1908).Google Scholar
  22. 20.
    N. H. March, in this volume.Google Scholar
  23. 21.
    L. E. Ballentine and W. J. Heaney, J. Phys. C: Solid-State Phys. 7, 1985 (1974).ADSCrossRefGoogle Scholar
  24. 22.
    M. Lax, Rev. Mod. Phys. 38, 541 (1966).MathSciNetADSMATHCrossRefGoogle Scholar
  25. 23.
    K. M. van Vliet, A. Friedmann, R. J. J. Zijistra, A. Gisolf and A. vanderZiel, J. Appl. Phys. 46, 1804 (1975).ADSCrossRefGoogle Scholar
  26. 24.
    K. M. van Vliet, A. Friedmann, R. J. J. Zijlstra, A. Gisolf and A. vanderZiel, J. Appl. Phys. 46 1814 (1975).ADSCrossRefGoogle Scholar
  27. 25.
    M. Lax, Rev. Mod. Phys. 32, 25 (1960).ADSMATHCrossRefGoogle Scholar
  28. 26.
    K. M. van Vliet and J. R. Fassett, in R. E. Burgess, ed., Fluctuation Phenomena in Solids, New York: Academic (1965).Google Scholar
  29. 27.
    W. Shockley, J. A. Copeland and R. P. James, in P. O. Lowdin, ed., Quantum Theory of Atoms, Molecules and the Solid State, New York: Acedemic (1962).Google Scholar
  30. 28.
    K. M. van Vliet, Solid-State Electronics 13, 649 (1970).ADSCrossRefGoogle Scholar
  31. 29.
    K. M. van Vliet, J. Math. Phys. 12, 1981 (171).Google Scholar
  32. 30.
    K. M. van Vliet, J. Math. Phys. 12, 1998 (1971).ADSMATHCrossRefGoogle Scholar
  33. 31.
    K. M. van Vliet, private communication.Google Scholar
  34. 32.
    J. L. Tandon, H. R. Bilger and M-A. Nicolet, Solid-State Electronics 18, 113 (1975).ADSCrossRefGoogle Scholar
  35. 33.
    R. P. Feynman, Statistical Mechanics, a Set of Lectures, New York: Benjamin (1972) Ch. 2.Google Scholar
  36. 34.
    K. K. Thornber, Ph. D. Thesis Part II, California Institute of Technology (1966), unpublished.Google Scholar

Copyright information

© Springer Science+Business Media New York 1976

Authors and Affiliations

  • K. K. Thornber
    • 1
  1. 1.Bell LaboratoriesMurray HillUSA

Personalised recommendations