Basic Introduction

  • M. L. Parsons
  • B. W. Smith
  • G. E. Bentley


It is felt that the user of this book will be a practicing flame spectroscopist, either a bench chemist in an industrial laboratory or a student (or professor) doing research. As such, it is felt that this person would already have a basic knowledge of flame spectroscopic theory and practice. If this is not the case, it would be highly recommended that the reader select one of the many introductory texts on the subject. (See Chapter I, B.) This chapter is included, however, to complement such texts and to remind the reader of the important fundamental concepts and experimental parameters in these techniques.


Basic Introduction Term Symbol Direct Spectral Species Mole Electrodeless Discharge Lamp 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Th. J Alkemade, Ref. l at end of Section A.Google Scholar
  2. 1.
    B. W. Smith & M. L. Parsons, J. Chem. Ed., 50, 679 (1973).Google Scholar
  3. 2.
    J. A. Dean & T. C. Rains, in “Flame Emission and Atomic Absorption Spectrometry,” Vol. 2, Marcel Dekker, New York, 1971, pp. 327–341.Google Scholar
  4. 1.
    C. Th. J. Alkemade, “Nomenclature, Symbols, Units and Their Usage in Spectrochemical Analysis III. Analytical Flame Spectroscopy and Associated Procedures,” IUPAC, 19 72. Plus personal communication, 1973.Google Scholar
  5. 2.
    H. G. Kuhn, “Atomic Spectra,” Academic Press, New York, 1962.Google Scholar
  6. 3.
    A. C. G. Mitcheel & M. W. Zemansky, “Resonance Radiation and Excited Atoms,” Cambridge Univ. Press, New York, 1961.Google Scholar
  7. 4.
    S. L. Morgan & S. N. Deming, Anal. Chem., 46, 1170 (1974).CrossRefGoogle Scholar
  8. 5.
    W.G. Cochran & G. M. Cox, “Experimental Designs,” Wiley, New York, 1957.Google Scholar
  9. 6.
    W. Mendenhall, “The Design and Analysis of Experiments,” Wadsworth Publishing, Belmont, California, 1968.Google Scholar
  10. M. L. Parsons & J. D. Winefordner, Appl. Spectrosc., 21, 368 (1967).CrossRefGoogle Scholar
  11. F. Burriel-Marti & J. Ramierz-Munoz, “Flame Photometry,” Elsevier, New York, 1957.Google Scholar
  12. J. A. Dean, “Flame Photometry,” McGraw-Hill, New York, 1960.Google Scholar
  13. R. Herrmann & C. Th. J. Alkemade, “Chemical Analysis by Flame Photometry,” Trans. P. T. Gilbert, Interscience, New York, 1963.Google Scholar
  14. R. Mavrodineanu & H. Boiteux, “Flame Spectroscopy,” Wiley, New York, 1965.Google Scholar
  15. E. Pungor, “Flame Photometric Theory,” Van Nostrand, London, 1967.Google Scholar
  16. W. T. Elwell & J. A. F. Gidley, “Atomic Absorption Spectrometry,” Pergamon, New York, 1966.Google Scholar
  17. J. Ramierz-Munoz, “Atomic Absorption Spectrometry, Elsevier, New York, 1968.Google Scholar
  18. W. Slavin, “Atomic Absorption Spectroscopy,” Interscience, New York, 1968.Google Scholar
  19. I. Rubeska & B. Moldan,, “Atomic Absorption Spectrophotometry,” CRC, Cleveland, 1969.Google Scholar
  20. J. A. Dean & T. C. Rains, “Flame Emission and Atomic Absorption Spectrometry, Vol. I, 1969; Vol. II, 1971, Vol. Ill, in prep., Dekker, New York, 1969.Google Scholar
  21. R. Mavrodineanu, Ed., “Analytical Flame Spectroscopy,” Springer-Verlag, London, 1970.Google Scholar
  22. B. V. L’vov, “Atomic Absorption Spectrochemical Analysis,” J. H. Dixon Trans., Hilger, London, 1970.Google Scholar
  23. J. D. Winefordner, Ed., “Spectrochemical Methods of Analysis,” Wiley, New York, 1971.Google Scholar
  24. R. J. Reynolds & K. Aldous, “Atomic Absorption Spectroscopy, A. Practical Guide,” Griffin, London, 1970.Google Scholar
  25. W. J. Price, “Analytical Atomic Absorption Spectrometry,” Heyden & Sons, London, 1972.Google Scholar
  26. J. D. Winefordner, S. G. Schulman, ST. C. O’Haver, “Luminescence Spectrometry in Analytical Chemistry,” Wiley, New York, 1972.Google Scholar
  27. 1.
    A. G. Gaydon and H. G. Wolfhard, Flames, Their Structure Radiation and Temperature, Chapman and Hall Ltd., London, 1970.Google Scholar
  28. 2.
    R. M. Fristrom and A. A. Westenberg, Flame Structure, Chap. 8, McGraw-Hill, 1965.Google Scholar
  29. 3.
    R. H. Tourin, Spectroscopic Gas Temperature Measurement, Elsevier Publishing Co., Amsterdam, 1966.Google Scholar
  30. 4.
    A. G. Gaydon and H. G. Wolfhard, “The Spectrum-Line Reversal Method of Measuring Flame Temperature,” Proc. Phys. Soc. (London), 65A, 19–24, 1952.Google Scholar
  31. 5.
    R. F. Browner and J. D. Winefordner, “Measurement of Flame Temperatures by a Two-Line Atomic Absorption Method,” Anal. Chem., 44, 247, 1972.CrossRefGoogle Scholar
  32. 6.
    N. Omenetto, P. Benetti and G. Rossi, “Flame Temperature Measurements by Means of Atomic Fluorescence Spectrometry,” Spectro-chimica Acta, 27B_, 453, 1972.CrossRefGoogle Scholar
  33. 7.
    C. M. Herzfeld, Temperature, Its Measurement and Control in Science and Industry, Vol. Ill, Part 2, Ed. by I. Dahl, Reinhold, N. Y., 1962.Google Scholar
  34. C.F. Dewey, Jr. in Modern Optical Methods in Gas Dynamic Research, Z. Dosanji, ed., Plenum Press, New York, 1971.Google Scholar
  35. R. J. Lovett, D. L. Welch, & M. L. Parsons, submitted, J. Appl. Spectrosc.Google Scholar
  36. R. J. Lovett, D. L. Welch, & M. L. Parsons, submitted, J. Appl. Spectrosc.Google Scholar
  37. M. L. Parsons, J. Chem. Ed,, 46, 290 (1969).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1975

Authors and Affiliations

  • M. L. Parsons
    • 1
  • B. W. Smith
    • 1
  • G. E. Bentley
    • 1
  1. 1.Department of ChemistryArizona State UniversityTempeUSA

Personalised recommendations