The Aquatic Resource

  • Mentz Indergaard
Part of the NATO Advanced Science Institutes Series book series (NSSA, volume 67)


The surface of the earth is about 508 x 106 km2, of which 71 percent is marine waters and about 5 percent is freshwater lakes and rivers. Much of the freshwater area is found in the temperate and cold regions where it is covered with ice in winter. This limits the growing season for the freshwater plants severely. The freshwater macrophytes are most noticeable when they clog inland waterways. The periodic removal of this biomass has in recent years been connected to its possible use by conversion to biogas. Conversion studies are in progress with reference to its local importance as a renewable source of energy, especially in developing countries (Choudhury et al. 1982).


Brown Alga Marine Alga Aquatic Resource Quick Lime Ascophyllum Nodosum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anon. 1976. The breeding of new varieties of haidai (Laminaria japonica Aresch.) with high production and high content of iodine. Sci. Sin. 19 (2): 243 - 252.Google Scholar
  2. Anon. 1980. Fishery Journal no. 12. Yamaha Motor Co., Ltd., AD et PR Div., 2500 Shingai, Iwata-shi, Shizuoka-ken, Japan. 12 pp.Google Scholar
  3. Anon. 1981. Pilot survey of the world seaweed industry and trade. International Trade Center UNCTAD/GATT, Palais des Nations, 1211 Geneva 10, Switzerland. 111 pp.Google Scholar
  4. Becker, E.W. and L.V. Venkatamaran. 1982. Biotechnology and Exploitation of Algae, The Indian Approach. Deutsche Gesellschaft fur Technische Zusammenarbeit, GmbH, Postfach 5180, Dag-Hammarskjold-Weg 1, D-6236 Eschborn 1, Fed. Rep. of Germany. 216 pp.Google Scholar
  5. Bonotto, S. 1979. List of multicellular algae of commercial use. In: Marine algae in pharmaceutical science ( H.A. Hoppe, T. Lev-ring and Y. Tanaka, Eds.), pp. 121 - 139. Walter de Gruyter. Berlin/New York.Google Scholar
  6. Chapman, V.J. and D.J. Chapman. 1980. Seaweeds and their uses. 3rd ed. Chapman and Hall. London/New York. 334 pp.CrossRefGoogle Scholar
  7. Cheng, T. 1969. Production of kelp - a major aspect of China’s ex- ploitation of the sea. J. Econ. Bot. 23 (3): 215 - 236.CrossRefGoogle Scholar
  8. Choudhury, R.P., Paul, P. and S.C. Santra. 1982. Energy and biomass production from freshwater macrophytes. Proc. 2nd EC Conf. on Energy from Biomass. (In press).Google Scholar
  9. Chuang, J.-L., Pan, B.S. and G.-C. Chen. 1977. Fishery products of Taiwan. JCRR Fisheries Series 25B, Taipei, Taiwan, Rep. of China. 90 pp.Google Scholar
  10. Doty, M.S. 1979. The present and future for algal materials. Actas I Symp. Algas Mar. Chilenas: 35 - 49.Google Scholar
  11. Doty, M.S. 1980. Outplanting Eucheuma species and Gracilaria species in the tropics. In: Pacific seaweed aquaculture (I.A. Abbott, M.S. Foster and L.F. Eklund, Eds.), pp.19-23. California Sea Grant College Program, Univ. of Calif., A-032, La Jolla, CA 92093.Google Scholar
  12. Ghosh, S., Klass, D.L. and D.P. Chynoweth. 1981. Bioconversion of Macrocystis pyrifera to methane. J. Chem. Tech. Biotechnol. 31: 791-807.Google Scholar
  13. Guiry, M.D. 1979. Commercial exploitation of marine red algal polysaccharides- progress and prospects. Trop. Sci. 21 (3): 183 - 195.Google Scholar
  14. Guiry, M.D. and G. Blunden. 1980. What hope for Irish seaweed? Seaweed around our coast. Technology Ireland Sept.: 38 - 43.Google Scholar
  15. Hansen, J.E., Packard, J.E. and W.T. Doyle. 1981. Mariculture of red seaweeds. California Sea Grant College Program, A-032 University of California, La Jolla, CA 92093. Report No. T-CSGCP-002. 42 pp.Google Scholar
  16. Hasegawa, Y. 1976. Progress of Laminaria cultivation in Japan. J. Fish. Res. Board Can. 33: 1002-1006.Google Scholar
  17. Hunt, J. 1980. Transfer of technology in Pacific seaweed research. In: Pacific seaweed aquaculture (I.A. Abbott, M.S. Foster and L.F. Eklund, Eds.), pp. 164-177. California Sea Grant College Program, Univ. of Calif., La Jolla, CA 92093.Google Scholar
  18. Jackson, G.A. and W.J. North. 1973. Concerning the selection of sea-weeds suitable for mass cultivation in a number of large, open-ocean, solar energy facilities in order to provide a source of organic matter for conversion to food, synthetic fuels and electrical energy. Final report under contract no. N 605030-73-MN-176, U.S. Naval Weapons Center, China Lake, California.Google Scholar
  19. Jensen, A. 1966. Norsk Institutt for Tang-og Tareforskning. Svensk Kemisk Tidsskrift 78(8): 393-403. (In Norwegian).Google Scholar
  20. Jensen. A. 1978. Industrial utilization of seaweeds in the past, present and future. Proc. Int. Seaweed Symp. 9: 17-34.Google Scholar
  21. Levring T., Hoppe, H. and O.J. Schmid. 1969. Marine algae; a survey of research and utilization. Cram, de Gruyter et Co. Hamburg.Google Scholar
  22. Mann, K.H. and A.R.O. Chapman. 1975. Primary production of marine macrophytes. In: Photosynthesis and productivity in different environments (I. Cooper, Ed.), pp. 207-223. Intern. Bio. Programme, Vol. 3. Cambridge U. Press, Cambridge.Google Scholar
  23. Madlener, J.C. 1977. The sea vegetable book. C.N. Potter. New York. 288 pp.Google Scholar
  24. Michanek, G. 1975. Seaweed resources of the ocean. FAO Fish. Techn. Paper 138. 127 pp.Google Scholar
  25. Michanek, G. 1979. Seaweed resources for pharmaceutical uses. In: Marine algae in pharmaceutical science ( H.A. Hoppe, T. Lev-ring and Y. Tanaka, Eds.), pp. 203 - 237. Walter de Gruyter. Berlin/New York.Google Scholar
  26. Michanek, G. 1981. Getting seaweed to where it’s needed. Ceres Jan.-Feb.: 41 - 44.Google Scholar
  27. Moss, J.R. 1977. Essential consideration for establishing seaweed extraction factories. In: The marine plant biomass of the Pacific Northwest Coast ( Moss, J.R, Ed.), pp. 301 - 315. Oregon State University Press.Google Scholar
  28. Naylor, J. 1976. Production, trade and utilization of seaweeds and seaweed products. FAO Fish. Techn. paper 159. 73 PP•Google Scholar
  29. Neish, I.C. 1980. Innovative trends in the marine colloid industry. In: Pacific seaweeds aquaculture (I.A. Abbott, M.S. Foster and L.F. Eklund, Eds.), pp. 6-10. California Sea Grant College Program, Univ. of Calif., A-032, LaJolla, CA 92093.Google Scholar
  30. North, W.J. 1980. Review paper. Biomass from marine macroscopic plants. Solar Energy 25: 387-395.Google Scholar
  31. Phillips, R.C. 1980. Overview of sea grass studies with special reference to tropical species. In: Pacific seaweed aquaculture. (I.A. Abbott, M.S. Foster and L.F. Eklund, Eds.), pp. 54-62. California Sea Grant College Program, Univ. of California, A-032, La Jolla, CA 92093.Google Scholar
  32. Priestly, G. 1978. Algal proteins. In: Food from waste ( G.G. BirchGoogle Scholar
  33. et al., Eds.), pp. 114-139. Applied Science Publ. London. Ryther, J.H. 1959. Potential productivity of the sea. Science 130: 602-608.Google Scholar
  34. Senn, T.L. and A.R. Kingman. 1978. Seaweed research in crop production. Dept. of Horticulture, Clemson University, Clemson, SC 29631. 135 pp. + app.Google Scholar
  35. Torii, S. and S. Kawashima. 1978. Experiments on propagation of Laminaria (Phaeophyceae). I. Propagation of Laminaria japonica by plastic pipe (netron) in sandy substrate. Proc. Int. Seaweed Symp. 9: 473-479.Google Scholar
  36. Tsung-ci, F., Chi-sun, T., Yu-lin, O., Chin-chin, T. and C. Tenchin. 1978. Some genetic observations on the monoploid breeding of Laminaria japonica. Sci. Sin. 21 (3): 401 - 408.Google Scholar

Copyright information

© Springer Science+Business Media New York 1983

Authors and Affiliations

  • Mentz Indergaard
    • 1
  1. 1.Institute of Marine Biochemistry The Norwegian Institute of TechnologyUniversity of TrondheimTrondheim - NTHNorway

Personalised recommendations