The Fermentation of Biomass — Current Aspects

  • Douglas E. Eveleigh
Part of the NATO Advanced Science Institutes Series book series (NSSA, volume 67)


Biomass is a major resource from which man can harvest solar energy and offers a renewable solution to the world’s deficiencies of energy, food and chemicals. The availability and composition of biomass has been detailed at this Study Institute. Its uses are diverse. This presentation addresses the application of microbes for the production of chemicals. Microorganisms are well known for their ability to grow rapidly on a wide range of biomass substrates, to effect a broad spectrum of specific chemical transformations, for their ease of culture and their reasonably high rates of synthesis of organic materials. For these reasons, bacteria and fungi have been used for the past century for the large scale production of a range of chemicals: citric acid, ethyl alcohol, enzymes and polysaccharides (Laskin et al. 1980; Office of Technology Assessment 1981; Peppler and Perlman 1979; Perlman and Tsao 1977–1982; Rose 1977).


Cellulase Production Trichoderma Reesei Clostridium Thermocellum Glucose Isomerase Trichoderma Viride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ait, N., N. Creuzet and P. Forget. 1979. Partial purification of cellulase of Clostridium thermocellum. J. Gen. Microbiol. 113: 399–402.CrossRefGoogle Scholar
  2. Allen, A.L. and R.E. Andreotti. 1982. Cellulase production in continuous and feed batch culture, e.g., Trichoderma reesei MCG80 (preprint Gatlinburg Energy Conference, 1982 ).Google Scholar
  3. Aunstrup, K. 1978. Enzymes of industrial interest; traditional as- pects. Ann. Rep. Fermentation Processes. 2: 125–154.Google Scholar
  4. Avgerinos, G.C. and D.I.C. Wang. 1980. Direct microbiological conversion of cellulose to ethanol. Ann. Reports Ferm. Processes. 4:165–191. (G. Tsao, Ed.). Academic Press, New York N.Y.Google Scholar
  5. Bailey, M., T.-M. Enari and M. Linko (Eds.). 1975. Symposium on Enzymatic Hydrolysis of Cellulose. Finnish National Fund for Research and Development, Helsinki.Google Scholar
  6. Bailey, M.J. and K.M.H. Nevalainen. 1981. Induction, isolation, and testing of stable Trichoderma reesei mutants with improved production of solubilizing cellulase. Enzyme Microbial Tech. 3: 153–157.CrossRefGoogle Scholar
  7. Beguin, P. and H. Eisen. 1978. Purification and partial characteristics of three extracellular cellulases from Cellulomonas sp. Europ. J. Biochem. 87: 525–531.PubMedCrossRefGoogle Scholar
  8. Beja da Costa, M. and N. Van Uden. 1980. Use of 2-deoxglucose in the selective isolation of mutants of Trichoderma reesei with enhanced ß-glucosidase production. Biotechnol. Bioeng. 22: 2429–2432.CrossRefGoogle Scholar
  9. Berg, B. 1975. Cellulase location in Cellvibrio fulvus. Can. J. Microbiol. 21, 51–57.PubMedCrossRefGoogle Scholar
  10. Bisaria, V.S. and T.K. Ghose. 1981. Biodegradation of cellulosic materials: substrates, microorganisms, enzymes and products. Enzyme Microbial Technol. 3: 90–104.CrossRefGoogle Scholar
  11. Bothast, R. 1981. Cited in Biotechnology News. 1:No. 12. June 15.Google Scholar
  12. Brown, Jr., R.D. and L. Jurasek. 1979. Hydrolysis of Cellulose: Mechanisms of Enzymatic and Acid Catalysis. Advances in Chemistry Series 181. Pub. Amer. Chem. Soc., Washington, D.C.CrossRefGoogle Scholar
  13. Brown, Jr., R.M. (Ed.) 1982. Cellulose and other natural polymer systems: Biogenesis, structure and degradation. pp. 519. Plenum Press, New York, N.Y.Google Scholar
  14. Bungay, H.R. 1981. Energy, the Biomass Options. John Wiley and Sons, New York. 347 pp.Google Scholar
  15. Chang, M.M., T.Y.C. Chou and G.T. Tsao. 1982. Structure, pretreatment and hydrolysis of cellulose. Adv. Biochem. Eng. 20: 16–42.Google Scholar
  16. Choi, W.Y., K.D. Haggett and N.W. Dunn. 1978. Isolation of a cotton wool degrading strain of Cellulomonas: mutants with altered ability to degrade cotton wool. Aust. J. Biol. Sci. 31: 553–564.Google Scholar
  17. Choudhury, N., P.P. Gray and N.W. Dunn. 1980. Saccharification of sugar cane bagasses by an enzyme preparation from Cellulomonas: Resistance to product inhibition. Biotech. Lett. 2: 427428.Google Scholar
  18. Côté, W. 1983. this symposium.Google Scholar
  19. Cuskey, S.M., E.M. Frein, B.S. Montenecourt and D.E. Eveleigh. 1982. Overproduction of Cellulase: Screening and Selection. Proceedings from FEMS Symposium on the Overproduction of Microbial Enzymes. Prague, Czechoslovakia, Chapt. 32. pp. 405–416Google Scholar
  20. Cuskey, S.M., B.S. Montenecourt and D.E. Eveleigh. 1981. Approaches for the isolation of ß -glucosidase end-product inhibition resistant mutants. Symposium Second International Course cum Symposium on Bioconversion and Biochemical Engineering. IIT Delhi, March, 1980, pp. 63–73.Google Scholar
  21. Dekker, R.F.H. 1980. Induction and characterization of a cellobiose dehydrogenase produced by a species of Monilia. J. Gen. Microbiol. 120: 309–316.Google Scholar
  22. Douglas, L. 1982. The chemistry and energetics of biomass conversion: An overview. In: Chemistry in Energy Production. (Eds.), R.G. Wymer and O.L. Keller. Southeast-Southwest Regional Amer. Chem. Soc. Meeting. Pub. Oak Ridge Natl. Lab., Oak Ridge, Tenn.Google Scholar
  23. Durand, H. and G. Tiraby. 1980. Abstract (poster session) 2nd Amer. Soc. Microbiol. Conf. on Genetics and Molecular Biology of Industrial Microorganisms. Indiana University, BloomingtonGoogle Scholar
  24. Ekman Days. 1981. Biosynthesis and Biodegradation of Wood Components. Int. Symp. Wood and Pulping Chemistry. Stockholm, Sweden.Google Scholar
  25. Emert, G.H., R. Katzen, R.E. Fredrickson, K.F. Kaupisch and C.E. Yeats. 1982. Design of the 45 MT/D cellulose to ethanol plant. In: First Pan-Pacific Synfuels Conference, pp. 447454. The Japan Petroleum Institute, Tokyo, Japan.Google Scholar
  26. Enari, T.M. and P. Markkanen. 1977. Production of cellulolytic enzymes by fungi. Adv. Biochem. Eng. 5: 1–24.Google Scholar
  27. Eriksson, K.-E. 1978. Enzyme mechanism involved in cellulose hydrolysis by the rot fungus Sporotrichum pulverulentum. Biotech. Bioen. 2.0: 317–332.Google Scholar
  28. Eriksson, K.E. 1981. Cellulases of fungi In: Trends in the Biology of Fermentations (Ed. A. Hollaender). pp. 19–32. Plenum Press, New York, N.Y.CrossRefGoogle Scholar
  29. Farkas, V., I. Labudova, S. Bauer and L. Ferenezy. 1981. Preparation of mutants of Trichoderma viride with increased production cellulase. Folia Microbiol. 26: 129–132.CrossRefGoogle Scholar
  30. Flickinger, M.C. 1980. Current biological research in conversion of cellulosic carbohydrates into liquid fuels: how far have we come? Biotechnol. Bioeng. 22: Suppl. 1, 27–48.Google Scholar
  31. Flickinger, M.C. and G.T. Tsao. 1978. Fermentation substrates from cellulosic materials. In: Annual Reports on Fermentation Processes. 2:23–42. (D. Perlman, Ed.) Academic Press, New York, N.Y.Google Scholar
  32. Gaden, E.L., Jr., M.H. Mandel, E.T. Reese and L.A. Spano, Eds. 1976. Enzymatic conversion of cellulosic materials: technology and applications. Biotechnol. Bioeng. Symp. No. 6. John Wiley and Sons, New York, N.Y.Google Scholar
  33. Gallo, B.J. 1982. Cellulase production by the new hyperproducing strain of Trichoderma reesei MCG 80 presented at American Institute of Chem. Engineers, Orlando, Fla. (February, 1982 ).Google Scholar
  34. Gallo, B.J., R. Andreotti, C. Roche, D. Ryu and M. Mandels. 1979. Cellulase production by a new mutant strain of Trichoderma reesei MCG-77. Biotech. Bioeng. Symp. 8. Biotechnology in Energy Production and Conversion. pp. 89–101. ( C.D. Scott, Ed. ).Google Scholar
  35. Ghose, T.K. 1977. Cellulase biosynthesis and hydrolysis of cellulosic substances. Adv. Biochem. Eng. 6: 39–76.Google Scholar
  36. Ghose, T.K., (Ed.). 1981. Bioconversion and Biochemical Engineering Symposium 2, Indian Institute of Technology New Delhi.Google Scholar
  37. Ghosh, A., S. Al-Rabiai, B.K. Ghosh, H. Trimino-Vazquez, D.E. Eveleigh, and B.S. Montenecourt. 1982a. Increased endplasmic reticulum content of a mutant of Trichoderma reesei RUT-C30 in relation to cellulase synthesis. Enzyme Microbial Tech. 4: 110–114.CrossRefGoogle Scholar
  38. Ghosh, V.K., R.K. Ghose and K.S. Gopalkrishnan. 1982b. Improvement in T. reesei strain through mutation and selective screening techniques. Biotech. Bioeng. 24: 241–243.CrossRefGoogle Scholar
  39. Goldstein, I.S. 1983. This symposium.Google Scholar
  40. Gong, C.-S. L.F. Chen, M.C. Flickinger and G.T. Tsao. 1981. Conversion of hemicellulose carbohydrates. Adv. Biochem. Eng. 20: 93–118.Google Scholar
  41. Gong, C.-S., L.D. McCracken and G.T. Tsao. 1981. Direct fermentation of D-xylose to ethanol by a xylose fermenting-yeast mutant, Candida sp. XF 217. Biotechnol. Letters. 3: 245–250.CrossRefGoogle Scholar
  42. Gong, C.-S. and G.T. Tsao. 1979. Cellulase and biosynthesis Regulation. Ann. Reports Fermentn. Process 3: 111–140.Google Scholar
  43. Goks6yr, J. and J. Eriksen. 1980. Cellulases. In: Economic Microbiology. 5:283–330. (Ed. A.H. Rose ). Academic Press, New York, N.Y.Google Scholar
  44. Gottvaldova, M., J. Kucera and V. Podrazky. 1982. Enhancement of cellulase production by Trichoderma viride using carbon/ nitrogen double-fed-batch. Biotech. Lett. 4: 229–232.CrossRefGoogle Scholar
  45. Gritzali, M. and R.D. Brown, Jr. 1979. The cellulase system of Trichoderma. Relationships between purified extracellular enzymes from induced or cellulose-grown cells. In: Hydroloysis of Cellulose: Mechanisms of Enzymatic and Acid Catalysis (Eds. R.D. Brown, Jr. and L. Jurasek.) Amer. Chem. Soc. Ser. 181, Washington, D.C.Google Scholar
  46. Groleau, D. and C.W. Forsberg. 1981. Celluloytic activity of the rumen bacterium Bacteroides succinogenes. Can. J. Microbiol. 27: 517–535.PubMedCrossRefGoogle Scholar
  47. Hägerdal, B., J. Ferchak, E.K. Pye and J.R. Forro. 1979. The eellulolytic enzyme system of Thermoactinomçes. In: Hydrolysis of Cellulose: Mechanisms of Enzymatic and Acid Catalysis. (Eds. R.D. Brown, Jr. and L. Jurasek.) Pub. Amer. Chem. Soc. pp. 331–345.Google Scholar
  48. Halliwell, G. 1978. Microbial ß -glucanases. Prog. Indust. Microbiol. 15: 1–58.Google Scholar
  49. Hitchner, E.V. and J.M. Leatherwood. 1980. Use of a cellulase-derepressed mutant of Cellulomonas in the production of a single -cell protein product from cellulose. Appl. Environment. Microbiol. 39: 382–386.Google Scholar
  50. Hsiao, H.-Y., L.-C. Chiang, L.F. Chen and G.T. Tsao. 1982. Effects of borate on isomerization and yeast fermentations of high xylulose solution and acid hydrolysate of hemicellulose. Enzyme Microbial Technol. 4: 25–31.CrossRefGoogle Scholar
  51. Inglin, M., B.A. Feinberg and J.R. Loewenberg. 1980. Partial purification and characterization of a new intracellular - glucosidase of Trichoderma reesei. Biochem. J. 185: 515–519.PubMedGoogle Scholar
  52. Jeffries, T.W. 1981. Conversion of xylose to ethanol under aerobic conditions by Candida tropicalis. Biotech. Lett. 3: 213–218.CrossRefGoogle Scholar
  53. Johnson, E.A., M. Sakajoh, G. Halliwell, A. Madia, and A.L. Demain. 1982. Saccharification of complex cellulosic substrates by the cellulase system from Clostridium thermocellum. Appl. Environmen. Microbiol. 43: 1125–1132.Google Scholar
  54. Knappert, F., H. Grethlein and A. Converse. 1980. Partial acid hydrolysis of cellulosic materials as a pretreatment for enzymatic hydrolysis. Biotech. Bioeng. 22: 1149–1463.CrossRefGoogle Scholar
  55. Kubicek, C.P. 1981. Release of carboxymethyl-cellulase and ß -glucosidase from cell walls of Trichoderma reesei. Europ. J. Appl. Microbiol. Biotech. 13: 226–231.CrossRefGoogle Scholar
  56. Laskin, A.I., M.C. Flickinger and E.L. Gaden, Jr. (Eds.) 1980. Fermentation: Science and Technology with a Future. Biotechnology and Bioengineering. Vol. 22. Supplement 1980.Google Scholar
  57. Lee, Y.-H. and L.T. Fan. 1980. Properties and mode of action of cellulase. Adv. Biochem. Eng. 17: 101–129.Google Scholar
  58. Linko, M. 1977. An evaluation of enzymatic hydrolysis of cellulosic materials. Adv. Biochem. Eng. 5: 25–48.CrossRefGoogle Scholar
  59. Ljungdahl, L.G., F. Bryant, L. Carreira, T. Saiki and J. Wiegel. 1981. Some aspects of thermophilic and extreme thermophilic anaerobic microorganisms. In: Trends in the Biology of Fermentation for Fuels and Chemicals ( A. Hollaender, Ed.) pp. 397–419. Plenum Press, New York, N.Y.CrossRefGoogle Scholar
  60. Maleszka, R., P.Y. Wang and H. Schneider. 1982. A Col El hybrid plasmid containing Escherichia coli genes complementing Dxylose negative mutants of Escherichia coli and Salmonella typhimurium. Can. J. Biochem. 60: 144–151.PubMedCrossRefGoogle Scholar
  61. Mandels, M. 1982. Cellulases. Ann. Rept. Ferm. Proc. 5:35–78. Mandels, M., J. Weber and R. Parizek. 1971. Enhanced cellulase pro- duction by a mutant of Trichoderma viride. Appl. Microbiol. 21: 152–154.Google Scholar
  62. Montenecourt, B.S., and D.E. Eveleigh. 1977. Preparation of mutants of Trichoderma reesei with enhanced cellulase production. Appl. Environ. Microbiol. 34: 777–782.Google Scholar
  63. Montenecourt, B.S. and D.E. Eveleigh. 1979. Production and characterization of high-yielding mutants of Trichoderma reesei. TAPPI 28: 101–108.Google Scholar
  64. Montenecourt, B.S., S.D. Nhlapo, H. Trimino-Vazquez, S. Cuskey, D.H.J. Schamhart, and D.E. Eveleigh. 1981. Regulatory controls in relation of over-production of fungal cellulases. In: Trends in the Biology of Fermentation of Fuels and Chemicals. 18:33–53, Ed. A. Hollander, Plenum Press, New York.Google Scholar
  65. Nevalainen, K.M.H. and E.T. Palva. 1978. Production of extracellular enzymes in mutants isolated from Trichoderma viride unable hydrolyze cellulose. Appl. Environ. Microbiol. 35: 11–16.PubMedGoogle Scholar
  66. Ng, T.K., P.J. Wiemer and J.G. Zeikus. 1977. Cellulolytic and Physiological properties of Clostridium thermocellum. Arch. Microbiol. 114: 1–7.PubMedCrossRefGoogle Scholar
  67. Nofsinger, G.W. and R.J. Bothast. 1981. Ethanol production by Zymomanas mobilis and Saccharomyces uvarum on aflatoxincontaminated and ammonia-detoxified corn. Can. J. Microbiol. 27: 162–167.PubMedCrossRefGoogle Scholar
  68. Office of Technology Assessment. 1980. Energy from biological processes. (T.E. Bull, Project Director). Library of Congress, Catalog Card N. 80–600118.Google Scholar
  69. Office of Technology Assessment. 1981. Impacts of applied genetics and microorganisms, plants and animals. (J.N. Gibbons, Director). pp. 331. Library of Congress, Catalog Card No. 81–600046.Google Scholar
  70. Palmer, R.E. and R.L. Anderson. 1972a. Cellobiose metabolism in Aerobacter aerogenes II. Phosphorylation of cellobiose with a cellobiose kinase. J. Biol. Chem. 247:3415–3419Google Scholar
  71. Palmer, R.E. and R.L. Anderson. 1972b. Cellobiose metabolism in Aerobacter aerogenes III. Clevage of cellobiose monophosphate by a phospho- R -glucosidase. J. Biol. Chem. 247: 3420–3423.PubMedGoogle Scholar
  72. Peppler, H.J. and D. Perlman. 1979. Microbial Technology. Volumes 1 and 2, 2nd Edition. Academic Press, New York, N.Y.Google Scholar
  73. Perlman, D. and G.T. Tsao (Eds.). 1977–82. Annual Reports of Fermentation Processes. Vols. 1–5. Academic Press, New York, N.Y.Google Scholar
  74. Polaina, J., J. Wiggs, R.H. Villet and K. Grohmann. 1982. Recombinant technology for ethanolic xylose fermentations. Amer. Chem. Soc. 183rd Nat. Meeting, Las Vegas (Abstract).Google Scholar
  75. Ramasamy, K. and H. Verachtert. 1980. Localization of cellulase components in Pseudomonas sp. isolated in activated sludge. J. Gen. Microbiol. 117: 181–191.Google Scholar
  76. Rapad (Research Association for Petroleum Alternatives Development). 1982. Research and Development on Synfuels Annual Report, Tokyo, Japan.Google Scholar
  77. Reese, E.T., R.G.H. Siu and H.S. Levinson. 1950. The biological degradation of soluble cellulose derivatives and its relationship to the mechanism of cellulose hydrolysis. J. Bacteriol. 59: 485–497.PubMedGoogle Scholar
  78. Reese, E.T. 1977. Degradation of polymeric carbohydrates by microbial enzymes. In: Recent Adv. Phytochemistry Vol. II. Edit. F. Loewus and V.C. Runneckles.Google Scholar
  79. Rickard, P.A.D. and S.P. Peiris. 1981. The hydrolysis of bagasse hemicelluloses by selected strains of Cellulomonas. Biotech. Lett. 3: 39–44.CrossRefGoogle Scholar
  80. Righelato, R.C. 1980. Anaerobic fermentation: Alcohol production. Phil. Trans. R. Soc. London. B290: 303–312.CrossRefGoogle Scholar
  81. Rose, A.H. 1977. Economic Microbiology. Vols. 1–5. Academic Press, New York, N.Y.Google Scholar
  82. Rosenberg, S.L. 1980. Fermentation of pentose sugars to ethanol and neutral products by microorganisms. Enzyme Microbial. Tech. 2:185–193-CrossRefGoogle Scholar
  83. Rydholm, S.A. 1956. Pulping processes. Interscience Publishers, New York, N.Y.Google Scholar
  84. Ryu, D. and M. Mandels. 1980. Cellulases: Biosynthesis and applications. Enzyme Microbial Technol. 2: 91–102.Google Scholar
  85. Saddler, J.N. and A.W. Khan. 1981. Cellulolytic enzyme system of Acetivibrio cellulolyticus. Can. J. Microbiol. 27: 288–294.PubMedCrossRefGoogle Scholar
  86. Schneider, H., P.Y. Wang, Y.K. Chan and R. Maleszka. 1981. Conversion of D-xylose into ethanol by the yeast Pachysolen tannophilus. Biotechnol. Lett. 3: 89–92.CrossRefGoogle Scholar
  87. Shoemaker, S.P., J.C. Raymond and R. Bruner. 1981. Cellulases: diversity amongst improved Trichoderma strains. In: Trends in the Biology of Fermentations for Fuels and Chemicals. ( A. Hollaender, Ed.). pp. 89–109, Plenum Press, New York, N.Y.CrossRefGoogle Scholar
  88. Slininger, P.J., R.J. Bothast, J.E. van Cauwenberge and C.P. Kurtzman. 1982. Conversion of D-xylose to ethanol by the yeast Pachysolen tannophilus. Biotech. Bioeng. 24: 371–384.CrossRefGoogle Scholar
  89. Takagi, M., S. Abe, S. Susuke, G.H. Emert and Y. Nata. 1978. Proc. Bioconversion. Symp. IIT (Ed. T.K. Ghose ). pp. 551–571.Google Scholar
  90. Tanaka, M., T. Morita, M. Taniguchi, R. Matsuno and T. Kamikubo. 1980. Saccharification of cellulose by combined hydrolysis with acid and enzyme. J. Ferm. Tech. 58: 517–524.Google Scholar
  91. Tangnu, S.K., H.W. Blanch and C.R. Wilke. 1981. Enhanced production of cellulase, hemicellulase and ß -glucosidase by Trichoderma reesei (RUT-C30). Biotech. Bioeng. 23: 1837–1849.CrossRefGoogle Scholar
  92. Thayer, D.W. 1978. Cellulolytic and physiological activities of bacteria during production of single cell protein from wood. AICHE Symp. Ser. 74: 126–135.Google Scholar
  93. Timell, T.E. 1964. Hemicelluloses. Adv. Carbohydrate Chem. 19: 247–302.CrossRefGoogle Scholar
  94. Tsao, G.T. 1978. Cellulosic material as a renewable resource. Process Biochem. 13 (10): 12–14.Google Scholar
  95. Ueng, P.P. and C.-S. Gong. 1982. Ethanol production from pentoses and sugar-cane bagasse hemicellulose hydrolysate by Mucor and Fusarium species. Enzyme Microbial Technol. 4: 169–191.CrossRefGoogle Scholar
  96. Ueng, P.P., C.A. Hunter, C.-S. Gong and G.T. Tsao. 1981. D-Xylulose fermentation in yeast. Biotechnol. Lett. 3: 315–315.CrossRefGoogle Scholar
  97. U.S. National Alcohol Fuels Commission. 1981. Fuel Alcohol. An energy alternative for the 1980’s. Final Report. pp.146. ISBN 0–9605762–0–7.Google Scholar
  98. Vaheri, M.P., M.E.O. Vaheri and V.S. Kauppinen. 1979. Formation and release of cellulolytic enzymes during growth of Trichoderma reesei on cellobiose and glycerol. Eur. J. Appl. Microbiol. Biotechnol. 8: 73–80.Google Scholar
  99. Venkatasubramanian, K. and C.R. Keim. 1981. Gasohol: A commercial perspective. New York Acad. Sciences. 369: 187–204.CrossRefGoogle Scholar
  100. Wang, P.Y., B.F. Johnson and H. Schneider. 1980. Fermentation of Dxylose by yeasts using glucose isomerase in the medium to convert D-xylose to D-xylulose. Biotechnol. Lett. 2: 273–278.CrossRefGoogle Scholar
  101. White, A.R. and R.M. Brown, Jr. 1981. Enzymatic hydrolysis of cellulose: Visual characterization of the process. Proc. Natl. Acad. Sci. 78: 1047–1051.Google Scholar
  102. Wiegel, J. 1980. Formation of ethanol by bacteria. A pledge for the use of extreme thermophilic anaerobic bacteria in industrial ethanol fermentation processes. Experientia. 36: 1434–1446.CrossRefGoogle Scholar
  103. Wiegel, J. and L.G. Ljungdahl. 1981. Thermoanaerobacter ethanolicus gen. nov., spec. nov. A new extreme thermophilic anaerobic bacterium. Arch. Microbiol. 128: 343–348.CrossRefGoogle Scholar
  104. Wood, T.M. 1981. Enzyme interactions involved in fungal degradation of cellulosic materials. Proceedings of the InternationalGoogle Scholar
  105. Symposium on Wood and Pulping Chemistry. The Ekman Days. Stockholm, Sweden. 3: 31–38.Google Scholar
  106. Wood, T.M. and S.I. McCrae. 1975. The cellulase complex of Trichoderma koningii. In: Symposium on Enzymatic Hydrolysis of Cellulose. ( M. Bailey, T.-M. Enari and M. Linko, Eds.). pp. 231–254. SITRA, Aulanko, Finland.Google Scholar
  107. Woodward, J. and A. Wiseman. 1982. Fungal and other ß -D-glucosidases–their properties and applications. Enzyme Microbial Technol. 4: 73–79.CrossRefGoogle Scholar
  108. Yamane, K., H. Suzuki and K. Nisizawa. 1970. Purification and prop-ties of extracellular and cell-bound cellualse components of Pseudomonas fluorescens var. cellulosa. J. Biochem. ( Tokyo ) 67: 19–35.Google Scholar
  109. Yoshikawa, T., H. Suzuki and H. Nisizawa. 1974. Biogenesis of multiple cellulase components of Pseudomonas fluorescens var. cellulosa. J. Biochem. 75: 531–540.PubMedGoogle Scholar
  110. Zeikus, J.G. 1979. Thermophilic Bacteria: Ecology, Physiology and Technology. Enzyme Microbial Technol. 1: 243–252.CrossRefGoogle Scholar
  111. Zeikus, J.G. 1980. Chemical and fuel production by anaerobic bacteria. Ann. Rev. Microbiol. 34: 423–464.CrossRefGoogle Scholar
  112. Zeikus, J.G., A. Ben-Bassat, T.K. Ng and R.J. Lamed. 1981. Thermophilic Ethanol Fermentations. In: Trends in the Biology of Fermentations, (Ed. A. Hollaender.) pp. 441–461. Plenum Press, New York, N.Y.CrossRefGoogle Scholar
  113. Zeikus, J.G. and T. Ng. 1982. Thermophilic saccharide fermentations. Ann. Report Ferm. Proc. 5: 263–289.Google Scholar
  114. Zertuche, L. and R.R. Zall. 1982. A study of producing ethanol from cellulose using Clostridium thermocellum. Biotech. Bioeng. 24: 57–68.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1983

Authors and Affiliations

  • Douglas E. Eveleigh
    • 1
    • 2
  1. 1.Department of Biochemistry and MicrobiologyCook CollegeNew BrunswickUSA
  2. 2.New Jersey Agricultural Experiment StationRutgers UniversityNew BrunswickUSA

Personalised recommendations