The Hamster pp 409-433 | Cite as

Visual and Somatosensory Processes

  • Barbara L. Finlay
  • Claire A. Berian


The hamster is an animal not specialized for vision that curiously has captured the attention of numerous specialists in vision. Although the initial choice of the hamster for Schneider’s (1969) germinal paper was guided principally by the experimental convenience of the hamster’s insatiable appetite for sunflower seeds and the ease of the neurosurgical approach to the midbrain, unforeseen advantages have emerged in studying hamsters. The analysis of hamster vision has forced a clearer understanding of the different reasons why comparative analyses of visual systems are useful. A researcher might choose to investigate hamster vision because the goal is to understand human vision. Since the hamster visual system is less elaborate than ours, one might hope to see the fundamental organization of mammalian vision somehow laid bare in the hamster. This is decidedly the context in which most work in rodent (principally rat) vision has been done to date. Alternatively, a researcher might be interested in the general design of sensory systems and in how the visual system is evolutionarily modified to fit the requirements of particular niches. By chance, it has turned out that the hamster is markedly less trainable than the rat, former principal representative of the “simple” mammalian visual system. The rat can usually be induced to perform simple versions of primate puzzles, whereas visuomotor tasks asked of the hamster must reflect its natural behavior more directly, and have included such things as recognition of seeds, crickets and other hamsters, and the ability to find holes and avoid barriers and threats. The resulting compilation of the natural visual capacities of a granivorous, predated-upon mammal primarily active at twilight makes a new sort of comparison possible to those of other well-studied vertebrates in different visual niches, such as frogs, monkeys, and cats. Basic design features of the vertebrate visual system versus niche specific adaptations are contrasted by these two approaches.


Visual Field Receptive Field Retinal Ganglion Cell Superior Colliculus Golden Hamster 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abrahams, V. C., and Rose, P. K., 1977, Projection of extra-ocular, neck muscle, and retinal afferents to superior colliculus in the cat: their connections to cells of origin of tectospinal tract, J. Neurophysiol. 38: 10–18.Google Scholar
  2. Anderson, M. E., Yoshida, M., and Wilson, V. J., 1971, Influences of cat superior colliculus on cat neck motoneurons, J. Neurophysiol. 34: 898–907.PubMedGoogle Scholar
  3. Bastiani, J., 1981, Visual and electrosensory responses in the optic tectum of a weakly electric fish, Soc. Neurosci. Abstr. 7: 845.Google Scholar
  4. Beckstead, R. M., 1979, An autoradiographic examination of corticocortical and subcortical projections of the mediodorsal-projection (prefrontal) cortex in the rat, J. Comp. Neurol. 184: 43–62.PubMedCrossRefGoogle Scholar
  5. Bruckner, R., 1951, Spaltlampenmikroscopie und Ophthalmoskopie am Auge von Ratte und Maus, Doc. Ophthalmol. 5–6: 452–554.CrossRefGoogle Scholar
  6. Bunt, A. H., Hendrickson, A. E., Lund, J. S., Lund, R. D., and Fuchs, A. F., 1975, Monkey retinal ganglion cells: morphometric analysis and tracing of axonal projections with a consideration of the peroxidase technique, J. Comp. Neurol. 164: 265–286.Google Scholar
  7. Chalupa, L. M., 1981, Some observations on the functional organization of the golden hamster’s visual system, Behay. Brain Res. 3: 198–200.Google Scholar
  8. Chalupa, L. M., and Henderson, Z., 1980, Monocular enucleation in adult hamsters induces functional changes in the remaining ipsilateral retinotectal projection, Brain Res. 192: 249–254.PubMedCrossRefGoogle Scholar
  9. Chalupa, L. M., and Rhoades, R. W., 1977, Responses of visual, somatosensory, and auditory neurones in the golden hamster’s superior colliculus, J. Physiol. (London) 270: 595–626.CrossRefGoogle Scholar
  10. Chalupa, L. M., and Rhoades, R. W., 1978, Directional selectivity in hamster’s superior colliculus is modified by strobe-rearing but not by dark-rearing, Science 199: 998–1001.PubMedCrossRefGoogle Scholar
  11. Chalupa, L. M., and Rhaodes, R. W., 1979, An autoradiographic study of the retinotectal projection in the golden hamster, J. Comp. Neurol. 186: 561–570.PubMedCrossRefGoogle Scholar
  12. Chalupa, L. M., and Thompson, I., 1980, Retinal ganglion cell projections to the superior colliculus of the hamster demonstrated by the horseradish peroxidase technique, Neurosci. Lett. 19: 13–19.PubMedCrossRefGoogle Scholar
  13. Chalupa, L. M., Morrow, A., and Rhoades, R. W., 1978, Behavioral consequences of visual deprivation and restriction in the golden hamster, Exp. Neurol. 61: 442–454.PubMedCrossRefGoogle Scholar
  14. Chow, K. L., Masland, R. H., and Stewart, D. L., 1971, Receptive field characteristics of striate cortical neurons in the rabbit, Brain Res. 33: 337–352.PubMedCrossRefGoogle Scholar
  15. Cowey, A., and Perry, V. H., 1979, The projection of the temporal retina in rats, studied by retrograde transport of horseradish peroxidase, Exp. Brain Res. 35: 457–464.PubMedGoogle Scholar
  16. Crain, B. J., and Hall, C. W., 1980, The organization of the lateral posterior nucleus of the golden hamster, J. Comp. Neural. 193: 351–370.CrossRefGoogle Scholar
  17. Crain, B. J., and Hall, W. C., 1981, The normal organization of the lateral posterior nucleus in the golden hamster and its reorganization after neonatal superior colliculus lesions, Behay. Brain Res, 3: 223–228.CrossRefGoogle Scholar
  18. Cynader, M., and Berman, N., 1972, Receptive-field organization of monkey superior colliculus, J. Neurophysiol. 35: 187–201.PubMedGoogle Scholar
  19. Drager, U. C., 1974, Autoradiography of tritiated proline and fucose transported transneuronally from the eye to the visual cortex in pigmented and albino mice, Brain Res. 82: 284–292.PubMedCrossRefGoogle Scholar
  20. Drager, U. C., 1975, Receptive fields of single cells and topography in mouse visual cortex, J. Comp. Neurol. 160: 269–290.PubMedCrossRefGoogle Scholar
  21. Drager, U. C., and Hubel, D., 1975, Responses to visual stimulation and relationship between visual auditory, and somatosensory inputs in mouse superior colliculus, J. Neurophysiol. 38: 690–713.PubMedGoogle Scholar
  22. Drager, U. C., and Hubel, D. H., 1976, Topography of visual and somatosensory projections to mouse superior colliculus, J. Neurophysiol. 39: 91–101.PubMedGoogle Scholar
  23. Drager, U. C., and Olsen, J. F., 1980, Origins of crossed and uncrossed retinal projections in pigmented and albino mice, J. Camp. Neurol. 191: 383–412.CrossRefGoogle Scholar
  24. Dursteler, M. R., Blakemore, C., and Garey, L. J., 1979, Projections to the visual cortex in the golden hamster, J. Comp. Neurol. 183: 185–204.PubMedCrossRefGoogle Scholar
  25. Ebbeson, S. O. E., 1970, On the organization of central vision pathways in vertebrates, Brain Behay. Evol. 3: 178–194.CrossRefGoogle Scholar
  26. Ebbeson, S. O. E., 1980, The parcellation theory and its relation to interspecific variability in brain organization, evolutionary and ontogenic development, and neuronal plasticity, Cell Tissue Res. 213: 179.Google Scholar
  27. Eichler, V. B., and Moore, R. Y., 1974, The primary and accessory optic systems in the golden hamster, Merocricetus auratus. Arta Anat. 89: 359–371.CrossRefGoogle Scholar
  28. Emerson, V. F., 1980, Grating acuity of the golden hamster: Effects of stimulus orientation and luminance, Exp. Brain Res. 38: 43–52.Google Scholar
  29. Emerson, V. F., Chalupa, L. M., Thompson, I. D., and Talbot, R. J., 1982, Behavioral, physiological and anatomical consequences of monocular deprivation in the golden hamster (Mesocricetus auratus), Exp. Brain Res. 45: 168–178.PubMedCrossRefGoogle Scholar
  30. Feldon, S., Feldon, P., and Kruger, L., 1970, Topography of the retinal projection upon the superior colliculus of the cat, Vision Res. 10: 135–143.PubMedCrossRefGoogle Scholar
  31. Finlay, B. L., and Sengelaub, D. R., 1981, Toward a neuroethology of mammalian vision: Ecology and anatomy of rodent visuomotor behavior, Behay. Brain Res. 3: 133–149.CrossRefGoogle Scholar
  32. Finlay, B. L., and Slattery, M., 1984, Local differences in the amount of early cell death in neocortex predict adult local specializations, Science 219: 1349–1351.CrossRefGoogle Scholar
  33. Finlay, B. L., Schneps, S. E., Wilson, K. G., and Schneider, G. E., 1978, Topography of visual and somatosensory projections to the superior colliculus of the golden hamster, Brain Res. 142: 223–235.PubMedCrossRefGoogle Scholar
  34. Finlay, B. L., Marder, K., and Cordon, D., 1980a, Acquisition of visuomotor behavior after neonatal rectal lesions in hamster: The role of visual experience, J. Comp. Physiol. Psychol. 94: 506–518.PubMedCrossRefGoogle Scholar
  35. Finlay, B. L., Sengelaub, D. R., Berg, A. T., and Cairns, S. J., 19801), A neuroethological approach to hamster vision, Behar. Brain Res. 1: 479–496.Google Scholar
  36. Frost, D. O., and Schneider, G. E., 1976, Normal and abnormal uncrossed retinal projections in Syrian hamsters as demonstrated by Fink-Heimer and autoradiographic techniques, Neurosci. Abstr. 2: 812.Google Scholar
  37. Frost, D. O., So, K.-F., and Schneider, G. E., 1979, Postnatal development of retinal projections in Syrian hamsters: A study using autoradiographic and anterograde degeneration techniques, Neuroscience 4: 1649–1677.PubMedCrossRefGoogle Scholar
  38. Fukada, Y., 1977, A three group classification of rat retinal ganglion cells: histological and physiological studies, Brain Res. 119: 327–311.CrossRefGoogle Scholar
  39. Fukada, Y., and Stone, J., Retinal distribution and central projections of y-, x-, and w-cells of the cat’s retina, J. Neurophjsisl. 37:719–772.Google Scholar
  40. Garey, L. J., and Powell, T. P. S., 1967, The projection of the lateral geniculate nucleus upon the cortex in the cat, Proc. R. Soc. (London) See. B169: 107–126.CrossRefGoogle Scholar
  41. Goodale, M. A., and Munson, R. C. C., 1975, The effects of lesions of the superior colliculus on locomotor orientation and the orienting reflex in the rat, Brain Res. 88: 213–261.CrossRefGoogle Scholar
  42. Graham, J., 1977, An autoradiographic study of the efferent connections of the superior colliculus in the cat, J. Comp. Nearsl. 173: 629–654.CrossRefGoogle Scholar
  43. Harting, J. K., 1977, Descending pathways from the superior colliculus: An autoradiographic analysis in the rhesus monkey (Macaca mulatta), J. Comp. Neural. 173: 583–612.CrossRefGoogle Scholar
  44. Harting, J. K., Hall, W. C., Diamond, I. T., and Martin, G. F., 1973, Antero grade degeneration study of the superior colliculus in Tupaia glis: Evidence for a subdivision between superficial and deep layers, J. Comp. Neurol. 148: 361–386.PubMedCrossRefGoogle Scholar
  45. Haseltine, E., Kaas, L., and Hartline, P. H., 1977, Infrared and visual organization of the tectum of bold snakes, Soc. Neurose:. Abstr. 3: 90.Google Scholar
  46. Hubel, D. H., and Wiesel, T. N., 1962, Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex, J. Physiol. 160: 167–287.Google Scholar
  47. Hubel, D. H., and Wiesel, T. N., 1968, Receptive fields and functional architecture of monkey striate cortex, J. Physiol. 195: 215–243.PubMedGoogle Scholar
  48. Hughes, H. C., 1977, Anatomical and neurobehavioral investigations concerning the thalamocortical organization of the rat’s visual system, J. Comp. Neural. 175: 311–336.CrossRefGoogle Scholar
  49. Ingle, D., and Sprague, J., 1975, Sensorimotor function of the midbrain tectum, Neurosci. Res. Prag. Bull. 13: 167–287.Google Scholar
  50. Jhaveri, S. R., and Schneider, G. E., 1974, Retinal projections in Syrian hamsters: Normal topography and alterations after partial tectum lesions at birth, Anat. Rec. 178: 383.Google Scholar
  51. Keselica, J. J., and Rosinski, R. R., 1976, Spatial perception in colliculectomized and normal golden hamsters, Physiol. Psychol. 4: 511–514.Google Scholar
  52. Knudsen, E. I., 1982, Auditory and visual maps of space in the optic tectum of the owl, J. Neurosci. 2: 1177–1194.PubMedGoogle Scholar
  53. Lee, K. J., and Woolsey, T. A., 1975, A proportional relationship between peripheral innervation density and cortical neuron number in the somatosensory system of the mouse, Brain Res. 99: 349–353.PubMedCrossRefGoogle Scholar
  54. Lent, R., 1982, The organization of subcortical projections of the hamster’s visual cortex, J. Camp. Neural. 206: 227–242.CrossRefGoogle Scholar
  55. Masland, R. H., Chow, K. L., and Stewart, D. L., 1971, Receptive-field characteristics of superior colliculus neurons in the rabbit, J. Neurophysia. 34: 148–156.Google Scholar
  56. Merker, B. H., 1980, The sentinel hypothesis; A role for the mammalian superior colliculus, Ph.D. Dissertation, Massachusetts Institute of Technology.Google Scholar
  57. Mitchener, J. C., Pinto, L. H., and Vanable, J. W., Jr., 1976, Visually evoked eye movements in the mouse (Mus musculus), Vision Res. 16: 1169–1171.CrossRefGoogle Scholar
  58. Mort, E., Cairns, S., Hersch, H., and Finlay, B., 1980, The role of the superior colliculus in visually guided locomotion and visual orienting in the hamster, Physiol. Psychol. 8: 20–28.Google Scholar
  59. Niimi, K., Kanaseki, T., and Takimoto, T., 1963, The comparative anatomy of the ventral nucleus of the lateral geniculate body in mammals, J. Camp. Neural. 121: 313–323.CrossRefGoogle Scholar
  60. Oyster, C. W., Takahashi, E. S., and Hurst, D. C., 1981, Density, soma size and regional distribution of rabbit retinal ganglion cells, J. Neurosci. 12: 1331–1346.Google Scholar
  61. Palmer, D. S., 1980, Orienting elicited by superior colliculus stimulation in the hamster, Master’s Thesis, Cornell University, New York.Google Scholar
  62. Pickard, G. E., and Silverman, A. J., 1981, Direct retinal projections to the hypothalamus, priform cortex, and accessory optic nuclei in the golden hamster as demonstrated by a sensitive anterograde horseradish peroxidase technique, J. Comp. Neurol. 196: 155–172.PubMedCrossRefGoogle Scholar
  63. Printz, R. H., and Hall, J. L., 1974, Evidence for a retinohypothalamic pathway in the golden hamster, Anat. Rec. 179: 57–66.PubMedCrossRefGoogle Scholar
  64. Rhoades, R. W., 1980, Response suppression induced by afferent stimulation in the superficial and deep layers of the hamster’s superior colliculus, Exp. Brain Res. 40: 185–195.PubMedCrossRefGoogle Scholar
  65. Rhoades, R. W., 198 la, Cortical and spinal somatosensory input to the superior colliculus in the golden hamster: An anatomical and electrophysiological study, J. Comp. Neurol. 195: 415–432.Google Scholar
  66. Rhoades, R. W., 198 lb, Organization of somatosensory input to the deep collicular laminae in hamster, Behay. Brain Res. 3: 201–222.Google Scholar
  67. Rhoades, R. W., and Chalupa, L. M., 1976, Directional selectivity in the superior colliculus of the golden hamster, Brain Res. 118: 334–338.PubMedCrossRefGoogle Scholar
  68. Rhoades, R. W., and Chalupa, L. M., 1978a, Conduction velocity distribution of the retinocollicular pathway in the golden hamster, Brain Res. 159: 396–401.PubMedCrossRefGoogle Scholar
  69. Rhoades, R. W., and Chalupa, L. M., 19786, Functional and anatomical consequences of neonatal visual cortical damage in the superior colliculus of the golden hamster, J. Neurophysiol. 41: 1466–1494.Google Scholar
  70. Rhoades, R. W., and Chalupa, L. M., 1979, Conduction velocity distribution of retinal input to the hamster’s superior colliculus and a correlation with receptive field characteristics, J. Comp. Neurol. 184: 243–264.PubMedCrossRefGoogle Scholar
  71. Rhoades, R. W., and DellaCroce, D. D., 1980a, Visual callosal connections in the golden hamster, Brain Res. 190: 248–254.PubMedCrossRefGoogle Scholar
  72. Rhoades, R. W., and DellaCroce, D. D., 19806, The cells of origin of the tectospinal tract in the golden hamster: An anatomical and electrophysiological investigation, Exp. Neurol. 67: 163–180.Google Scholar
  73. Robertson, R. T., Kaitz, S. S., and Robards, M. J., 1980, A subcortical pathway links sensory and limbic systems of the forebrain, Neurosci. Lett. 17: 161–165.PubMedCrossRefGoogle Scholar
  74. Rodieck, R. W., 1979, Visual pathways, Annu. Rev. Neurosci. 2: 193–225.CrossRefGoogle Scholar
  75. Rose, J. D., 1982, Midbrain distribution of neurons with strong, sustained responses to lordosis trigger stimuli in the female golden hamster, Brain Res. 240: 364–367.PubMedCrossRefGoogle Scholar
  76. Rosenquist, A. C., Edwards, S. B., and Palmer, L. A., 1974, An autoradiographic study of the projections of the dorsal lateral ggniculate nucleus and the posterior nucleus in the cat, Brain Res. 80 71–93.PubMedCrossRefGoogle Scholar
  77. Rusak, B., 1977, The role of the suprachiasmatic nuclei in the generation of circadian rhythms in the golden hamster, Mesocricetus auratus, J. Comp. Physiol. 118: 145–164.CrossRefGoogle Scholar
  78. Scalia, F., 1972, The termination of retinal axons in the pretectal region of mammals, J. Comp. Neurol. 145: 223–258.PubMedCrossRefGoogle Scholar
  79. Schiffman, H. R., 1970, Evidence for sensory dominance: Reactions to apparent depth in rabbits, cats and rodents, J. Comp. Physiol. Psychol. 71: 38–41.PubMedCrossRefGoogle Scholar
  80. Schiffman, H. R., 1971, Depth perception as a function of age and photic condition of rearing, J. Comp. Physiol. Psychol. 76: 491–495.PubMedCrossRefGoogle Scholar
  81. Schiller, P. H., and Malpeli, J. G., 1977, Properties and tectal projections of monkey retinal ganglion cells, J. Neurophysiol. 40: 428–495.PubMedGoogle Scholar
  82. Schneider, G. E., 1969, Two visual systems: Brain mechanisms for localization and discrimination are dissociated by tectal and cortical lesions, Science 163: 895–902.PubMedCrossRefGoogle Scholar
  83. Schneider, G. E., 1970, Mechanisms of functional recovery following lesions of the visual cortex or superior colliculus in neonate and adult hamsters, Brain Behar. Evol. 3: 285–323.CrossRefGoogle Scholar
  84. Schneider, G. E., and Jhaveri, S. R., 1974, Neuroanatomical correlates of spared or altered function after brain lesions in the newborn hamster, in: Plasticity and Recovery of Function in the Central Nervous Systems (D. G. Stein, J. J. Rosen, and N. Butters, eds.), Academic Press, New York, pp. 65–109.Google Scholar
  85. Sengelaub, D. R., Windrem, M. S., and Finlay, B. L., 1983, Increased cell number in the adult hamster retinal ganglion cell layer after early removal of one eye, Exp. Brain Res. 52: 269–276.PubMedCrossRefGoogle Scholar
  86. Siminoff, R., Schwassman, H. O., and Kruger, L., 1966, An electrophysiological study of the visual projection to the superior colliculus of the rat, J. Comp. Neural. 127: 435–444.CrossRefGoogle Scholar
  87. Stein, B. E., 1981, Organization of the rodent superior colliculus:some comparisons with other mammals, Behar. Brain Res. 3: 175–188.CrossRefGoogle Scholar
  88. Stein, B. E., and Dixon, J. P., 1978, Superior colliculus cells respond to noxious stimuli, Brain Res. 158: 65–73.PubMedCrossRefGoogle Scholar
  89. Stein, B. E., and Dixon, J. F., 1979, Properties of superior colliculus neurons in the golden hamster, J. Comp. Neurol. 183: 269–284.PubMedCrossRefGoogle Scholar
  90. Stein, B. E., Magalhaes-Castro, B., and Kruger, L., 1976, Relationship between visual and tactile representations in cat superior colliculus, J. Neurophysiol. 39: 401–419.PubMedGoogle Scholar
  91. Sterling, P., and Wickelgren, B. G., 1969, Visual receptive fields in the superior colliculus of the cat, J. Neurophysiol. 32: 1–15.PubMedGoogle Scholar
  92. Terashima, S.-I., and Goris, R. C., 1975, Tectal organization of pit viper infrared reception, Brain Res, 83: 490–494.PubMedCrossRefGoogle Scholar
  93. Tiao, Y.-C., and Blakemore, C., 1976a, Functional organization in the superior colliculus of the golden hamster, J. Comp. Neural. 168: 483–504.CrossRefGoogle Scholar
  94. Tio, Y.-C., and Blakemore, C. 19766, Functional organization in the visual cortex of the golden hamster, J. Comp. Neurol. 168: 459–482.Google Scholar
  95. Tiao, Y.-C., and Blakemore, C., 1976, Regional specialization in the golden hamster’s retina, J. Comp. Neurol. 168: 439–458.PubMedCrossRefGoogle Scholar
  96. Van Essen, D. C., 1979, Visual areas of the mammalian cerebral cortex, Anna. Rev. Neurosci. 2: 227–263.CrossRefGoogle Scholar
  97. Vogt, B. A., and Peters, A., 1981, Formal distribution of neurons in rat cingulate cortex: Areas 32, 24 and 29, J. Comp. Neurol. 195: 603–625.PubMedCrossRefGoogle Scholar
  98. Waldron, H. A., and Gwyn, D. G., 1969, Descending nerve tracts in the spinal cord of the rat. I. Fibers from the midbrain, J. Comp. Neurol. 137: 143–154.PubMedCrossRefGoogle Scholar
  99. Wiesenfeld, Z., and Branchek, T., 1976, Refractive state and visual acuity in the hooded rat, Vision Res. 16: 823–827.PubMedCrossRefGoogle Scholar
  100. Wiesenfeld, Z., and Kornel, E. E., 1975, Receptive fields of single cells in the visual cortex of the hooded rat, Brain Res. 94: 401–412.PubMedCrossRefGoogle Scholar
  101. Woolsey, C. N., Carlton, T. G., Kaas, J. H., and Earls, F. J., 1971, Projection of the visual field on superior colliculus of ground squirrel (Citellus tridecemlineatus), Vision Res. 11: 115–127.PubMedCrossRefGoogle Scholar
  102. Woolsey, T. A., Welker, C., and Schwartz, R. H., 1975, Comparative anatomical studies of the sml face cortex with special reference to the occurrence of “barrels” in layer IV, J. Comp. Neurol. 164: 79–94.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Barbara L. Finlay
    • 1
  • Claire A. Berian
    • 1
  1. 1.Department of PsychologyCornell UniversityIthacaUSA

Personalised recommendations