Formation and Assembly of Alphavirus Glycoproteins

  • Milton J. Schlesinger
  • Sondra Schlesinger
Part of the The Viruses book series (VIRS)


Among the variety of enveloped viruses that exist in nature, the Togaviridae family is generally considered to be among the simplest with regard to structure and composition of the virus. The virion structure is examined in detail in Chapter 22. In this chapter, we focus on the major protein components of the virion envelope and describe modifications of these proteins that occur as they mature from nascent polypeptides to fully mature and functional glycoproteins that form the spikes of the infectious particle. Most of our information about togavirus glycoproteins comes from biochemical studies of the two alphaviruses, Semliki Forest virus and Sindbis virus (Garoff et al., 1982). These viruses have provided valuable models for the analysis of membrane proteins.


Chinese Hamster Ovary Cell Glycosylation Site Vesicular Stomatitis Virus Glucose Residue Virus Glycoprotein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Acheson, N. H., and Tamm, I., 1967, Replication of Semliki Forest virus: An electron microscopic study, Virology 32: 128.PubMedCrossRefGoogle Scholar
  2. Adams, R. H., and Brown, D. T. 1982, Inhibition of Sindbis virus maturation after treatment of infected cells with trypsin, J. Virol. 41: 692.PubMedGoogle Scholar
  3. Aliperti, G., and Schlesinger, M. J., 1978, Evidence for an autoprotease of Sindbis virus capsid protein, Virology 90: 336.CrossRefGoogle Scholar
  4. Bell, J. R., and Strauss, J. H., 1981, In vivo N-terminal acetylation of Sindbis virus proteins, J. Biol. Chem. 256: 8006.Google Scholar
  5. Bell, J. W., Jr., Garry, R. F., and Waite, M. R. F., 1979, Effect of low-NaC1 medium on the envelope glycoproteins of Sindbis virus, J. Virol. 25: 764.Google Scholar
  6. Bell, J. R., Rice, C. M., Hunkapiller, M. W., and Strauss, J. H., 1982, The N-terminus of PE2 in Sindbis virus-infected cells, Virology 119: 255.PubMedCrossRefGoogle Scholar
  7. Berger, M., and Schmidt, M. F. G., 1984, Cell-free fatty acid acylation of Semliki Forest viral polypeptide with microsomal membranes from eukaryotic cells, J. Biol. Chem. 259: 7245.PubMedGoogle Scholar
  8. Birdwell, C. R., Strauss, E. G., and Strauss, J. H., 1973, Replication of Sindbis virus. III. An electron microscopic study of virus maturation using the surface replica technique, Virology 56: 429.PubMedCrossRefGoogle Scholar
  9. Bonatti, S., and Cancedda, F. D., 1982, Postranslational modifications of Sindbis virus glycoproteins: Electrophoretic analysis of pulse—chase-labeled infected cells, J. Virol. 42: 64.PubMedGoogle Scholar
  10. Bonatti, S., Cancedda, R., and Blobel, G., 1979, Membrane biogenesis, in vitro cleavage, core glycosylation and integration into microsomal membranes of Sindbis virus glycoproteins, J. Cell Biol. 80: 219.PubMedCrossRefGoogle Scholar
  11. Bracha, M., and Schlesinger, M. J., 1976a, Inhibition of Sindbis virus replication by zinc ions, Virology 72: 272.PubMedCrossRefGoogle Scholar
  12. Bracha, M., and Schlesinger, M. J., 1976b, Defects in RNA + temperature sensitive mutants of Sindbis virus and evidence for a complex of PE2—E1 viral glycoproteins. Virology 74: 441.PubMedCrossRefGoogle Scholar
  13. Brown, D. T., and Smith, J. F., 1975, Morphology of BHK-21 cells infected with Sindbis virus temperature sensitive mutants in complementation groups D and E, J. Virol. 15: 1262.PubMedGoogle Scholar
  14. Brown, D. T., and Waite, M. R. F., 1972, Morphology and morphogenesis of Sindbis virus as seen with freeze—etching techniques, J. Virol. 10: 524.PubMedGoogle Scholar
  15. Burge, B. W., and Pfefferkorn, E. R., 1966, Phenotypic mixing between group A arboviruses, Nature)London) 210: 1397.CrossRefGoogle Scholar
  16. Burke, D., and Keegstra, K., 1979, Carbohydrate structure of Sindbis virus glycoprotein E2 from virus grown in hamster and chicken cells, J. Virol. 29: 546.PubMedGoogle Scholar
  17. Burke, B., Walter, C., Griffith, G., and Warren, G., 1983, Viral glycoproteins at different stages of intracellular transport can be distinguished using monoclonal antibodies, Eur. J. Cell Biol. 31: 315.PubMedGoogle Scholar
  18. Cancedda, R., Swanson, R., and Schlesinger, M. J., 1974, Viral proteins formed in a cell free rabbit reticulocyte system programmed with RNA from a temperature-sensitive mutant of Sindbis virus, J. Virol. 14: 664.PubMedGoogle Scholar
  19. Cancedda, R., Villa-Komaroff, L., Lodish, H. F., and Schlesinger, M., 1975, Initiation sites for translation of Sindbis virus 42S and 26S messenger RNAs, Cell 6: 215.PubMedCrossRefGoogle Scholar
  20. Cancedda, R., Bonatti, S., and Leone, A., 1981, One extra oligosaccharide chain of the highmannose class in the E2 protein of a Sindbis virus isolate, J. Virol. 38: 8.PubMedGoogle Scholar
  21. Dalgamo, L., Rice, C. M., and Strauss, J. H., 1983, Ross river virus 265 RNA: Complete nucleotide sequence and deduced sequence of the encoded structural proteins, Virology 129: 170.CrossRefGoogle Scholar
  22. Datema, R., Romero, P. A., Legler, G., and Schwarz, R. T., 1982, Inhibition of formation of complex oligosaccharides by the glucosidase inhibitor bromoconduritol, Proc. Natl. Acad. Sci. U.S.A. 79: 6787.PubMedCrossRefGoogle Scholar
  23. Datema, R., Romero, P. A., Rott, R., and Schwarz, R. T., 1984, On the role of oligosaccharide trimming in the maturation of Sindbis and influenza virus, Arch. Virol. 81: 25.PubMedCrossRefGoogle Scholar
  24. Davidson, S. K., and Hunt, L. A., 1983, Unusual neutral oligosaccharides in mature Sindbis virus glycoproteins are synthesized from truncated precursor oligosaccharides in Chinese hamster ovary cells, J. Gen. Virol. 64: 613.PubMedCrossRefGoogle Scholar
  25. Davidson, S. K., and Hunt, L. A. 1985a, Sindbis virus glycoproteins are abnormally glyco- sylated in Chinese hamster ovary cells deprived of glucose, J. Gen. Virol. 66: 1457.PubMedCrossRefGoogle Scholar
  26. Davidson, S. K., and Hunt, L. A., 1985b, Hazelhurst vesicular stomatitis virus G and Sindbis virus El glycoproteins undergo similar host cell-dependent variation in oligosaccharide processing, Biochem. J. 229: 47–55.PubMedGoogle Scholar
  27. Docherty, K., Carroll, R. J., and Steiner, D. F., 1982, Conversion of proinsulin to insulin: Involvement of a 31,500 molecular weight thiol protease, Proc. Natl. Acad. Sci. U.S.A. 79: 4613.PubMedCrossRefGoogle Scholar
  28. Dunphy, W. G., Brands, R., and Rothman, J. E., 1985, Attachment of terminal N-acetylglucosamine to asparagine-linked oligosaccharides occurs on the central cisternae of the Golgi Stack, Cell 40: 463.PubMedCrossRefGoogle Scholar
  29. Durbin, R. K., and Stollar, V., 1984, A mutant of Sindbis virus with a host-dependent defect in maturation associated with hyperglycosylation of E2, Virology 135: 331.PubMedCrossRefGoogle Scholar
  30. Erwin, C., and Brown, D. T., 1980, Intracellular distribution of Sindbis virus membrane proteins in BHK-21 cells infected with wild-type virus and maturation defective mutants, J. Virol. 36: 775.PubMedGoogle Scholar
  31. Gallione, C. J., and Rose, J. K., 1983, Nucleotide sequence of a cDNA clone encoding the entire glycoprotein from the New Jersey serotype of vesicular stomatitis virus, J. Virol. 46: 162.PubMedGoogle Scholar
  32. Garoff, H., and Simons, K., 1974, Location of the spike glycoproteins in the Semliki Forest virus membrane, Proc. Natl. Acad. Sci. U.S.A., 71: 3988.PubMedCrossRefGoogle Scholar
  33. Garoff, H., and Söderlund, H., 1978, The amphiphilic membrane glycoproteins of Semliki Forest virus are attached to the lipid bilayer by their COOH-terminal ends, J. Mol. Biol. 124: 535.PubMedCrossRefGoogle Scholar
  34. Garoff, H., Simons, K., and Dobberstein, B., 1978, Assembly of the Semliki Forest virus membrane glycoproteins in the membrane of the endoplasmic reticulum in vitro, J. Mol. Biol. 124: 587.PubMedCrossRefGoogle Scholar
  35. Garoff, H., Frischauf, A.-M., Simons, K., Lehrach, H., and Delius, H., 1980, Nucleotide sequence of cDNA coding for Semliki Forest virus membrane glycoproteins, Nature (London) 288: 236.CrossRefGoogle Scholar
  36. Garoff, H., Kondor-Koch, C., and Riedel, H., 1982, Structure and assembly of alphaviruses, Curr. Top. Microbiol. Immunol. 99: 1.PubMedCrossRefGoogle Scholar
  37. Garoff, H., Kondor-Koch, C., Petterson, R., and Burke, B., 1983, Expression of Semliki Forest virus proteins from cloned complementary DNA. II. The membrane-spanning glycoprotein E2 is transported to the cell surface without its normal cytoplasmic domain, J. Cell Biol. 97: 652.PubMedCrossRefGoogle Scholar
  38. Gibson, R., Schlesinger, S., and Kornfeld, S., 1979, The nonglycosylated glycoprotein of vesicular stomatitis virus is temperature-sensitive and undergoes intracellular aggregation at elevated temperatures, J. Biol. Chem. 254: 3600.PubMedGoogle Scholar
  39. Gibson, R., Kornfeld, S., and Schlesinger, S., 1980, A role for oligosaccharides in glycoprotein biosynthesis, Trends Biochem. Sci. 5: 290.CrossRefGoogle Scholar
  40. Glanville, N., and Ulmanen, J., 1976, Biological activity of in vitro synthesized protein: Binding of Semliki Forest virus capsid protein to the large ribosomal subunit, Biochem. Biophys. Commun. 71: 393.CrossRefGoogle Scholar
  41. Gottlieb, C., Kornfeld, S., and Schlesinger, S., 1979, Restricted replication of two alphaviruses in ricin-resistant mouse L cells with altered glycosyltransferase activities, J. Virol. 29: 344.PubMedGoogle Scholar
  42. Green, J., Griffith, G., Louvard, D., Quinn, P., and Warren, G., 1981, Passage of viral membrane glycoproteins through the Golgi complex, J. Mol. Biol. 152: 663.PubMedCrossRefGoogle Scholar
  43. Griffiths, G., Brands, R., Burke, B., Lowcard, D., and Warren, G., 1982, Viral membrane proteins acquire galactose in trans Golgi cisternae during intracellular transport, J. Cell Biol. 95: 781.PubMedCrossRefGoogle Scholar
  44. Griffiths, G., Quinn, P., and Warren, G., 1983, Dissection of the Golgi complex, 1. Monensin inhibits the transport of viral membrane proteins from medial to trans Golgi cisternae in baby hamster kidney cells infected with Semliki Forest virus, J. Cell Biol. 96: 835.PubMedCrossRefGoogle Scholar
  45. Griffiths, G., Warren, G., Quinn, P., Mathieu-Costello, and Hoppeler, H., 1984, Density of newly synthesized plasma membrane proteins in intracellular membranes. I. Sterological studies, J. Cell Biol. 98: 7133.Google Scholar
  46. Hakimi, J., and Atkinson, P. H., 1980, Growth-dependent alterations in oligomannosyl glycopeptides expressed in Sindbis virus glycoproteins, Biochemistry 19: 5619.PubMedCrossRefGoogle Scholar
  47. Hakimi, J., and Atkinson, R. H., 1982, Glycosylation of intracellular Sindbis virus glycoproteins, Biochemistry 21: 2140.PubMedCrossRefGoogle Scholar
  48. Hashimoto, K., and Simizu, B., 1982, A temperature-sensitive mutant of Western equine encephalitis virus with an altered envelope protein El and a defect in the transport of envelope glycoproteins, Virology 119: 276.PubMedCrossRefGoogle Scholar
  49. Hashimoto, K., Erdel, S., Keranen, S., Saraste, J., and Kääriäinen, L., 1981, Evidence for a separate signal sequence for the carboxy-terminal envelope glycoprotein El of Semliki Forest virus, J. Virol. 38: 34.PubMedGoogle Scholar
  50. Helenius, A., and Kartenbeck, J., 1980, The effects of octylglucoside on the Semliki Forest virus membrane: Evidence for a spike-protein—nucleocapsid interaction, Eur. J. Biochem. 106: 613.PubMedCrossRefGoogle Scholar
  51. Hirschberg, C. B., and Robbins, P. W., 1974, The glycolipids and phospholipids of Sindbis virus and their relation to the lipids of the host cell plasma membrane, Virology 61: 602.PubMedCrossRefGoogle Scholar
  52. Hsieh, P., and Robbins, P. W., 1984, Regulation of asparagine-linked oligosaccharide processing, J. Biol. Chem. 259: 2375.PubMedGoogle Scholar
  53. Hsieh, P., Rosner, M. R., and Robbins, P. W., 1983a, Host-dependent variation of asparagine-linked oligosaccharides at individual glycosylation sites of Sindbis virus glycoproteins, J. Biol. Chem. 258: 2548.PubMedGoogle Scholar
  54. Hsieh, P., Rosner, M. R., and Robbins, P. W., 1983b, Selective cleavage by endo-(3-N-acetylglucosaminidase H at individual glycosylation sites of Sindbis virion envelope glycoproteins, J. Biol. Chem. 258: 2555.PubMedGoogle Scholar
  55. Hunt, L. A., Etchison, J. R., and Summers, D. F., 1978, Oligosaccharide chains are trimmed during synthesis of the envelope glycoprotein of vesicular stomatitis virus, Proc. Natl. Acad. Sci. U.S.A. 75: 754.PubMedCrossRefGoogle Scholar
  56. Huth, A., Rapoport, T. A., and Kääriäinen, L., 1984, Envelope proteins of Semliki Forest virus synthesized in Xenopus oocytes are transported to the cell surface, EMBO J. 3: 767.PubMedGoogle Scholar
  57. Ishida, I., Simizu, B., Koizumi, S., Oya, A., and Yamada, M., 1981, Nucleoside triphosphate phosphohydrolase produced in BHK-cells infected with WEE is probably associated with an 82 k dalton non-structural protein, Virology 108: 13–20.PubMedCrossRefGoogle Scholar
  58. Johnson, D. C., and Schlesinger, M. J., 1980, Vesicular stomatitis virus and Sindbis virus glycoprotein transport to the cell surface is inhibited by ionophores, Virology 103: 407.PubMedCrossRefGoogle Scholar
  59. Johnson, D. C., Schlesinger, M. J., and Elson, E. L., 1981, Fluorescence photobleaching recovery measurements reveal differences in envelopment by Sindbis and vesicular stomatitis virus, Cell 23: 423.PubMedCrossRefGoogle Scholar
  60. Johnston, R. E., 1983, Requirement for host replication of Sindbis virus, J. Virol. 45: 200.PubMedGoogle Scholar
  61. Kääriäinen, L., Hashimoto, K., Saraste, J., Virtanen, I., and Penttinen, K., 1980, Monensin and FCCP inhibit the intracellular transport of alphavirus membrane glycoproteins, J. Cell Biol. 87: 783.PubMedCrossRefGoogle Scholar
  62. Kaluza, G., and Pauli, G., 1980, The influence of intramolecular disulfide bonds on the structure and function of Semliki Forest virus membrane glycoproteins, Virology 102: 300.PubMedCrossRefGoogle Scholar
  63. Kaluza, G., Roh, R., and Schwarz, R. T., 1980, Carbohydrate-induced conformational changes of Semliki Forest virus glycoproteins determine antigenicity, Virology 102: 286.PubMedCrossRefGoogle Scholar
  64. Keegstra, K., Sefton, B., and Burke, D., 1975, Sindbis virus glycoproteins; Effect of the host cell on the oligosaccharides, J. Virol. 16: 613.PubMedGoogle Scholar
  65. Kennedy, S. I. T., 1974, The effect of enzymes on structural and biological properties of Semliki Forest virus, J. Gen. Virol. 23: 129.PubMedCrossRefGoogle Scholar
  66. Konder-Koch, C., Burke, B., and Garoff, H., 1983, Expression of Semliki Forest virus proteins from cloned complementary DNA. 1. The fusion activity of the spike glycoprotein, J. Cell Biol. 97: 644.CrossRefGoogle Scholar
  67. Kornfeld, R., and Kornfeld, S., 1985, Assembly of asparagine-linked oligosaccharides, Annu. Rev. Biochem. 54: 631.PubMedCrossRefGoogle Scholar
  68. Kornfeld, S., Li, E., and Tabas, I., 1978, The synthesis of complex-type oligosaccharides. II. Characterization of the processing intermediates in the synthesis of the complex oligosaccharide units of the vesicular stomatitis virus G protein, J. Biol. Chem. 253: 7771.PubMedGoogle Scholar
  69. Leavitt, R., Schlesinger, S., and Kornfeld, S., 1977, Tunicamycin inhibits glycosylation and multiplication of Sindbis and vesicular stomatitis virus, J. Virol. 21: 375.PubMedGoogle Scholar
  70. Lenard, J., 1980, Lipids of alphaviruses, in: The Togaviruses (R. W. Schlesinger, ed), pp. 335–341, Academic Press, New York.Google Scholar
  71. Magee, A. I., Koyama, A. H., Malfer, C., Wen, D., and Schlesinger, M. J., 1984, Release of fatty acids from virus glycoproteins by hydroxylamine, Biochim. Biophys. Acta 798, 156.PubMedCrossRefGoogle Scholar
  72. Mann, E., Edwards, J., and Brown, D. T., 1983, Polycaryocyte formation mediated by Sindbis virus glycoproteins, J. Virol. 45: 1083.PubMedGoogle Scholar
  73. Mayne, J. T., Rice, C. M., Strauss, E. G., Hunkapiller, M. W., and Strauss, J. H., 1984, Biochemical studies of the maturation of the small Sindbis virus glycoprotein E2, Virology 134: 338.PubMedCrossRefGoogle Scholar
  74. Mayne, J. T., Bell, J. R., and Strauss, J. H., 1985, Pattern of glycosylation of Sindbis virus envelope proteins synthesized in hamster and chicken cells, Virology d in press).Google Scholar
  75. Pan, Y. T., Hori, H., Saul, R., Sanford, B. A., Molyneux, R. J., and Elbein, A. D., 1983, Castanospermine inhibits the processing of the oligosaccharide portion of the influenza viral hemagglutinin, Biochemistry 22: 3975.PubMedCrossRefGoogle Scholar
  76. Pessin, J. E., and Glaser, M., 1980, Budding of Rous sarcoma virus and vesicular stomatitis virus from localized regions in the plasma membrane of chicken embryo fibroblasts, J. Biol. Chem. 255: 9044.PubMedGoogle Scholar
  77. Pollack, L., and Atkinson, P. H., 1983, Correlation of glycosylation forms with position in amino acid sequence, J. Cell Biol. 97: 293.PubMedCrossRefGoogle Scholar
  78. Quinn, P., Griffiths, G., and Warren, G., 1983, Dissection of the Golgi complex, II. Density separation of specific Golgi functions in virally infected cells treated with monensin, J. Cell Biol. 96: 851.PubMedCrossRefGoogle Scholar
  79. Quinn, P., Griffiths, G., and Warren, G., 1984, Density of newly synthesized plasma membrane proteins in intracellular membranes. II. Biochemical studies, J. Cell Biol. 98: 2147.CrossRefGoogle Scholar
  80. Reidel, H., 1985, Different membrane anchors allow the Semliki Forest virus spike subunit E2 to reach the cell surface, J. Virol. 54: 224.Google Scholar
  81. Rice, C. M., and Strauss, J. H., 1981, Nucleotide sequence of the 26S mRNA of Sindbis virus and deduced sequence of the encoded virus structural proteins, Proc. Natl. Acad. Sci. U.S.A. 78: 2062.PubMedCrossRefGoogle Scholar
  82. Rice, C. M., and Strauss, J. H., 1982, Association of Sindbis virion glycoproteins and their precursors, J. Mol. Biol. 154: 325.PubMedCrossRefGoogle Scholar
  83. Rice, C. M., Bell, J. R., Hunkapiller, M. W., Strauss, E. G., and Strauss, J. H., 1982, Isolation and characterization of the hydrophobic COOH-terminal domains of the Sindbis virion glycoproteins, J. Mol. Biol. 154: 355.PubMedCrossRefGoogle Scholar
  84. Richardson, C. D., and Vance, D. E., 1978, The effect of colchicine and dibucaine on the morphogenesis of Semliki Forest virus, J. Biol. Chem. 253: 4584.PubMedGoogle Scholar
  85. Robbins, P. W., Hubbard, S. C., Turco, S. J., and Wirth, D. F., 1977, Proposal for a common oligosaccharide intermediate in the synthesis of membrane glycoproteins, Cell 12: 893.PubMedCrossRefGoogle Scholar
  86. Roehrig, J. T., Gorski, D., and Schlesinger, M. J., 1982, Properties of monoclonal antibodies directed against the glycoproteins of Sindbis virus, J. Gen. Virol. 59: 421.PubMedCrossRefGoogle Scholar
  87. Rose, J. K., Adams, G. A., and Gallione, C., 1984, The presence of cysteine in the cytoplasmic domain of the vesicular stomatitis virus glycoprotein is required for palmitate addition, Proc. Natl. Acad. Sci. U.S.A. 81: 2050.PubMedCrossRefGoogle Scholar
  88. Rothman, J. E., Miller, R. L., and Urbane, L. J., 1984, Intercompartmental transport in the Golgi complex is a dissociative process: Facile transfer of membrane protein between two Golgi populations, J. Cell Biol. 99: 260.PubMedCrossRefGoogle Scholar
  89. Saraste, J., and Kaismanen, E., 1984, Pre-and post-Golgi vacuoles operate in the transport of Semliki Forest virus membrane glycoproteins to the cell surface, Cell 38: 535.PubMedCrossRefGoogle Scholar
  90. Saraste, J., VonBonsdorff, C. H., Hashimoto, K., Kääriäinen, L., and Keränen, S., 1980, Semliki Forest virus mutants with temperature-sensitive transport defect of envelope proteins, Virology 100: 229.PubMedCrossRefGoogle Scholar
  91. Saunier, B., Kilker, R. D., Jr., Tkacz, J. S., Quaroni, A., and Herscovics, A., 1982, Inhibition of N-linked complex oligosaccharide formation by 1-deoxynojirimycin, an inhibitor of processing glucosidases, J. Biol. Chem. 259: 14155.Google Scholar
  92. Scheefers, H., Scheefers-Borchel, U., Edwards, J., and Brown, D. T., 1980, Distribution of virus structural proteins and protein—protein interactions in plasmid membrane of baby hamster kidney cells infected with Sindbis or vesicular stomatitis virus, Proc. Natl. Acad. Sci. U.S.A. 77: 7277.PubMedCrossRefGoogle Scholar
  93. Schlesinger, M. J., and Malfer, C., 1982, Cerulenin blocks fatty acid acylation of glycoproteins and inhibits vesicular stomatitis and Sindbis virus particle formation, J. Biol. Chem. 257: 9887.PubMedGoogle Scholar
  94. Schlesinger, S., and Schlesinger, M. J., 1972, Formation of Sindbis virus proteins: Identification of a precursor for one of the envelope proteins, J. Virol. 10: 925.PubMedGoogle Scholar
  95. Schlesinger, S., Gottlieb, C., Feil, P., Gelb, N., and Kornfeld, S., 1976, Growth of enveloped RNA viruses in a line of Chinese hamster ovary cells with deficient N-acetyl-glucosaminyltransferase activity, J. Virol. 17: 239.Google Scholar
  96. Schlesinger, S., Malfer, C., and Schlesinger, M. J., 1984, The formation of vesicular stomatitis virus (San Juan strain) becomes temperature-sensitive when glucose residues are retained on the oligosaccharides of the glycoprotein, J. Biol. Chem. 259: 7597.PubMedGoogle Scholar
  97. Schesinger, S., Koyama, A H, Malfer, C., Gee, S. L., and Schlesinger, M. J., 1985, The effects of inhibitors of glucosidase I on the formation of Sindbis virus, Virus Res. 2: 139.CrossRefGoogle Scholar
  98. Schmaljohn, A. L., Kokabun, K. M., and Cole, G. A., 1983, Protective monoclonal antibodies define maturational and pH-dependent antigenic changes in Sindbis virus El glycoprotein, Virology 130: 144.PubMedCrossRefGoogle Scholar
  99. Schmidt, M. F. G., 1982, Acylation of viral spike glycoproteins, a feature of envelope RNA viruses, Virology 116: 327.PubMedCrossRefGoogle Scholar
  100. Schmidt, M. F. G., and Schlesinger, M. J., 1980, Relation of fatty acid attachment to the translation and maturation of vesicular stomatitis and Sindbis virus membrane glycoproteins, J. Biol. Chem. 255: 3334.PubMedGoogle Scholar
  101. Schmidt, M. F. G., Bracha, M., and Schlesinger, M. J., 1979, Evidence for covalent attachment of fatty acids to Sindbis virus glycoproteins, Proc. Natl. Acad. Sci. U.S.A. 76: 1687.PubMedCrossRefGoogle Scholar
  102. Schwarz, R. T., and Datema, R., 1984, Inhibitors of trimming: New tools in glycoprotein research, Trends Biochem. Sci. 9: 32.CrossRefGoogle Scholar
  103. Schwarz, R. T., Rohrschneider, J. M., and Schmidt, M. F. G., 1976, Suppression of glycoprotein formation of Semliki Forest influenza, and avian sarcoma virus by tunicamycin, J. Virol. 19: 782.PubMedGoogle Scholar
  104. Sefton, B. M., 1977, Immediate glycosylation of Sindbis virus membrane proteins, Cell 10: 659.PubMedCrossRefGoogle Scholar
  105. Simizu, B., Hashimoto, K., and Ishida, I., 1983, A varient of Western equine encephalitis virus with nonglycosylated E3 protein, Virology 125: 99.PubMedCrossRefGoogle Scholar
  106. Simons, K., and Garoff, H., 1980, The budding mechanism of enveloped animal viruses, J. Gen. Virol. 50: 1.PubMedCrossRefGoogle Scholar
  107. Simons, K., and Warren, G., 1984, Semliki Forest virus: A probe for membrane traffic in the animal cell, Adv. Protein Chem. 36: 79.PubMedCrossRefGoogle Scholar
  108. Smith, J. F., and Brown, D. T., 1977, Envelopment of Sindbis virus: Synthesis and organization of proteins in cells infected with wild type and maturation defective mutants, J. Virol. 22: 662.PubMedGoogle Scholar
  109. Söderlund, H., and Ulmanen, I., 1977, Transient association of Semliki Forest virus capsid protein with ribosomes, J. Virol. 24: 907.PubMedGoogle Scholar
  110. Steiner, D. F., Docherty, K., and Carroll, R., 1984, Golgi/granule processing of peptide hormone and neuropeptide precursors: A minireview, J. Cell. Biochem. 24: 121.PubMedCrossRefGoogle Scholar
  111. Strauss, E. G., Birdwell, C. R., Lenches, E. M., Staples, S. E., and Strauss, J. H., 1977, Mutants of Sindbis virus. II. Characterization of a maturation-defective mutant ts103, Virology 82: 122.PubMedCrossRefGoogle Scholar
  112. Strauss, E. G., Lenches, E., and Stamreich-Martin, M., 1980, Growth and release of several alphaviruses in chick and BHK cells, J. Gen. Virol. 49: 297.PubMedCrossRefGoogle Scholar
  113. Strauss, E. G., Tsukeda, H., and Simizu, B., 1983, Mutants of Sindbis virus. IV. Heterotypic complementation and phenotypic mixing between temperature-sensitive mutants and wild type Sindbis and Western equine encephalitis virus, J. Gen. Virol. 64: 1581.PubMedCrossRefGoogle Scholar
  114. Struck, D. K., and Lennarz, W. J., 1980, The function of saccharide-lipids in synthesis of glycoproteins, in: The Biochemistry of Glycoproteins and Proteoglycans (W. J. Lennarz, ed.), pp. 35–83, Plenum Press, New York.CrossRefGoogle Scholar
  115. Tabas, I., and Kornfeld, S., 1978, The synthesis of complex-type oligosaccharides, J. Biol. Chem. 253: 779.Google Scholar
  116. Tabas, I., Schlesinger, S., and Kornfeld, S. 1978, Processing of high mannose oligosaccharides to form complex type oligosaccharides on the newly synthesized polypeptide of the vesicular stomatitis virus G protein and the IgG heavy chain, J. Biol. Chem. 253: 716.PubMedGoogle Scholar
  117. Ulmanen, I., Söderlund, H., and Kääriäinen, L., 1979, Role of protein synthesis in the assembly of Semliki Forest virus nucleocapsid, Virology 99: 265.PubMedCrossRefGoogle Scholar
  118. Waite, M. R. F., and Pfefferkorn, E. R., 1970, Inhibition of Sindbis virus production by media of low ionic strength: Intracellular events and requirements for reversal, J. Virol. 5: 60.PubMedGoogle Scholar
  119. Walter, P., and Blobel, G., 1981, Translocation of proteins across the endoplasmic reticulum. III. Signal recognition protein (SRP) causes signal-dependent and site-specific arrest of chain elongation that is released by microsomal membranes, J. Cell Biol. 91: 557.PubMedCrossRefGoogle Scholar
  120. Walter, P., and Blobel, G., 1982, Signal recognition particle contains a 7S RNA essential for protein translocations across the endoplasmic reticulum, Nature (London) 299: 691.CrossRefGoogle Scholar
  121. Welch, W. J., and Sefton, B. M., 1980, Characterization of a small, nonstructural viral polypeptide present late during infection of BHK cells by Semliki Forest virus, J. Virol. 33: 230.PubMedGoogle Scholar
  122. Wengler, G., Boege, U., Wengler, G., Bischoff, H., and Wahn, K., 1982, The core protein of the alphavirus Sindbis virus assembles into core-like nucleoproteins with the viral gen-orne RNA and with other single-stranded nucleic acids in vitro, Virology 118: 401.PubMedCrossRefGoogle Scholar
  123. Wengler, G., Wengler, G., Boege, U., and Wahn, K., 1984, Establishment and analysis of a system which allows assembly and disassembly of alphavirus core-like particles under physiological conditions in vitro, Virology 132: 401.PubMedCrossRefGoogle Scholar
  124. Wengler, G., and Wengler, G., 1984, Identification of a transfer of viral core protein to cellular ribosomes during the early stages of alphavirus infection, Virology 134: 435.PubMedCrossRefGoogle Scholar
  125. Wirth, D. F., Katz, F., Small, B., and Lodish, H. F., 1971, How a single Sindbis virus mRNA directed the synthesis of one soluble protein and two integral membrane glycoproteins, Cell 10: 253.CrossRefGoogle Scholar
  126. Yamamoto, K., Suzuki, K., and Simizu, B., 1981, Hemolytic activity of the envelope glycoproteins of western equine encephalitis virus in reconstitution experiments, Virology 109: 452.PubMedCrossRefGoogle Scholar
  127. Zavadova, Z., Zavada, J., and Weiss, R., 1977, Unilateral phenotypic mixing of envelope antigens between togaviruses and vesicular stomatitis virus or avian RNA tumor virus, J. Gen. Virol. 37: 557.CrossRefGoogle Scholar
  128. Ziemiecki, A., and Garoff, H., 1978, Subunit composition of the membrane glycoprotein complex of Semliki Forest virus, J. Mol. Biol. 122: 259.PubMedCrossRefGoogle Scholar
  129. Ziemiecki, A., Garoff, H., and Simons, K., 1980, Formation of the Semliki Forest virus membrane glycoprotein complexes in the infected cells, J. Gen. Virol. 50: 111.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Milton J. Schlesinger
    • 1
  • Sondra Schlesinger
    • 1
  1. 1.Department of Microbiology and ImmunologyWashington University School of MedicineSt. LouisUSA

Personalised recommendations