Advertisement

Structure and Replication of the Alphavirus Genome

  • Ellen G. Strauss
  • James H. Strauss
Part of the The Viruses book series (VIRS)

Abstract

In the last few years, our knowledge of the molecular biology of viruses has been greatly expanded by the technology of nucleic acid sequencing. Determination of the complete sequence of virus genomes coupled with mapping of the virus-encoded proteins on those genomes has resulted in a wealth of information about the structure of the genome, the nature of the encoded proteins, the translation strategy used by the virus, and the nature of proteolytic processing or other modification events involved in maturation of viral proteins. Comparison of the nucleic acid and deduced amino acid sequences of related viruses can reveal conserved domains, suggesting that these regions play key roles in either virus replication or morphology. Recombinant DNA technology makes it possible to design experiments to test the function of such domains directly; in particular, manipulation of viral genomes may lead to a more directed approach to vaccine production than the empirical strategies used heretofore. In a number of cases, the single base changes (and resulting amino acid substitutions) responsible for the temperature-sensitive phenotype of certain mutants have been determined. Nucleic acid sequencing is also being used to locate immunological epitopes as well as protein domains involved in virulence and specific tissue tropisms.

Keywords

Capsid Protein Tobacco Mosaic Virus Nonstructural Protein Semliki Forest Virus Sindbis Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahlquist, P., Dasgupta, R., and Kaesberg, P., 1984a, Nucleotide sequence of the brome mosaic virus genome and its implications for viral replication, J. Mol. Biol. 172: 369–383.PubMedCrossRefGoogle Scholar
  2. Ahlquist, P., French, R., Janda, M., and Loesch-Fries, L. S., 1984b, Multicomponent RNA plant virus infection derived from cloned viral cDNA, Proc. Natl. Acad. Sci. U.S.A. 81: 7066–7070.PubMedCrossRefGoogle Scholar
  3. Ahlquist, P., Strauss, E. G., Rice, C. M., Strauss, J. H., Haseloff, J., and Zimmern, D., 1985, Sindbis virus proteins nsPl and nsP2 contain homology to nonstructural proteins from several RNA plant viruses, J. Virol. 53: 536–542.PubMedGoogle Scholar
  4. Aliperti, G., and Schlesinger, M. J., 1978, Evidence for an autoprotease activity of Sindbis virus capsid protein, Virology 90: 366–369.PubMedCrossRefGoogle Scholar
  5. Arias, C., Bell, J. R., Lenches, E. M., Strauss, E. G., and Strauss, J. H., 1983, Sequence analysis of two mutants of Sindbis virus defective in the intracellular transport of their glycoproteins, J. Mol. Biol. 168: 87–102.PubMedCrossRefGoogle Scholar
  6. Bade, R. S., Carlin, L. J., and Johnston, R. E., 1983, Requirement for host transcription in the replication of Sindbis virus, J. Virol. 45: 200–205.Google Scholar
  7. Bell, J. R., and Strauss, J. H., 1981, In vivo NH2-terminal acetylation of Sindbis virus proteins, J. Biol. Chem. 256: 8006–8011.PubMedGoogle Scholar
  8. Bell, J. R., Hunkapiller, M. W., Hood, L. E., and Strauss, J. H., 1978, Amino-terminal sequence analysis of the structural proteins of Sindbis virus, Proc. Natl. Acad. Sci. U.S.A. 75: 2722–2726.PubMedCrossRefGoogle Scholar
  9. Bell, J. R., Rice, C. M., Hunkapiller, M. W., and Strauss, J. H., 1982, The N-terminus of PE2 in Sindbis virus-infected cells, Virology 119: 255–267.PubMedCrossRefGoogle Scholar
  10. Bell, J. R., Kinney, R. M., Trent, D. W., Strauss, E. G., and Strauss, J. H., 1984, An evolutionary tree relating eight alphaviruses based on amino-terminal sequences of their glycoproteins, Proc. Natl. Acad. Sci. U.S.A. 81: 4702–4706.PubMedCrossRefGoogle Scholar
  11. Bhatti, A. R., and Weber, J., 1979, Protease of adenovirus type 2: Partial characterization, Virology 96: 478–485.PubMedCrossRefGoogle Scholar
  12. Birdwell, C. R., Strauss, E. G., and Strauss, J. H., 1973, Replication of Sindbis virus. III. An electron microscopic study of virus maturation using the surface replica technique, Virology 56: 429–438.PubMedCrossRefGoogle Scholar
  13. Blobel, G., 1980, Intracellular protein topogenesis, Proc. Natl. Acad. Sci. U.S.A. 77: 1496–1500.PubMedCrossRefGoogle Scholar
  14. Blobel, G., Walter, P., Chang, C.-N., Goldman, B. M., Erickson, A. H., and Lingappa, V. R., 1979, Translocation of proteins across membranes: The signal hypothesis and beyond, in: Secretory Mechanisms, pp. 9–36, Cambridge University Press, Cambridge.Google Scholar
  15. Boege, U., Wengler, G., Wengler, G., and Wittmann-Liebold, B., 1981, Primary structures of the core proteins of the alphaviruses Semliki Forest virus and Sindbis virus, Virology 113: 293–303.PubMedCrossRefGoogle Scholar
  16. Bonatti, S., and Blobel, G., 1979, Absence of a cleavable signal sequence in Sindbis virus glycoprotein PE2, J. Biol. Chem. 254: 12261–12264.PubMedGoogle Scholar
  17. Bonatti, S., Cancedda, R., and Blobel, G., 1979, Membrane biogenesis: In vitro cleavage, core glycosylation, and integration into microsomal membranes of Sindbis virus glycoproteins, J. Cell Biol. 80: 219–224.PubMedCrossRefGoogle Scholar
  18. Bracha, M., and Schlesinger, M. J., 1976, Defects in RNA+ temperature-sensitive mutants of Sindbis virus and evidence for a complex of PE2–E1 viral glycoproteins, Virology 74: 441–449.PubMedCrossRefGoogle Scholar
  19. Bracha, M., Leone, A., and Schlesinger, M. J., 1976, Formation of a Sindbis virus nonstructural protein and its relation to 42 S mRNA function, J. Virol. 20: 612–620.PubMedGoogle Scholar
  20. Brown, D. T., 1980, The assembly of alphaviruses, in The Togaviruses ( R. W. Schlesinger, ed.), pp. 473–501, Academic Press, New York.Google Scholar
  21. Brzeski, H., and Kennedy, S. I. T., 1977, Synthesis of Sindbis virus nonstructural polypeptides in chicken embryo fibroblasts, J. Virol 22: 420–429.PubMedGoogle Scholar
  22. Brzeski, H., and Kennedy, S. I. T., 1978, Synthesis of alphavirus-specified RNA, J. Virol. 25: 630–640.PubMedGoogle Scholar
  23. Burge, B. W., and Pfefferkorn, E. R., 1966, Complementation between temperature-sensitive mutants of Sindbis virus, Virology 30: 214–223.PubMedCrossRefGoogle Scholar
  24. Burge, B. W., and Pfefferkorn, E. R., 1968, Functional defects of temperature-sensitive mutants of Sindbis virus, J. Mol. Biol. 35: 193–205.PubMedCrossRefGoogle Scholar
  25. Calisher, C. H., Shope, R. E., Brandt, W., Casals, J., Karabatsos, N., Murphy, F. A., Tesh, R. B., and Wiebe, M. E., 1980, Proposed antigenic classification of registered arboviruses. I. Togaviridae, alphavirus, Intervirology 14: 229–232.PubMedCrossRefGoogle Scholar
  26. Cancedda, R., Swanson, R., and Schlesinger, M. J., 1974, Effects of different RNAs and components of the cell-free system on in vitro synthesis of Sindbis viral proteins, J. Virol. 14: 652–663.PubMedGoogle Scholar
  27. Chanas, A. C., Gould, E. A., Clegg, J. C. S., and Varma, M. G. R., 1982, Monoclonal antibodies to Sindbis virus glycoprotein El can neurtralize, enhance infectivity and independently inhibit haemagglutination of haemolysis, J. Gen. Virol. 58: 37–46.PubMedCrossRefGoogle Scholar
  28. Clegg, J. C. S., and Kennedy, S. I. T., 1975, Translation of Semliki-Forest-virus intracellular 26-S RNA, Eur. J. Biochem. 53: 175–183.CrossRefGoogle Scholar
  29. Clegg, J. C. S., Brzeski, H., and Kennedy, S. I. T., 1976, RNA polymerase components in Semliki Forest virus-infected cells: Synthesis from large precursors, J. Gen. Virol. 32: 413–430.PubMedCrossRefGoogle Scholar
  30. Clewley, J. P., and Kennedy, S. I. T., 1976, Purification and polypeptide composition of Semliki Forest virus RNA polymerase, J. Gen. Virol. 32: 395–411.PubMedCrossRefGoogle Scholar
  31. Collins, P L, Fuller, F. J., Marcus, P. I., Hightower, L. E., and Ball, L. A., 1982, Synthesis and processing of Sindbis virus nonstructural proteins in vitro, Virology 118: 363–379.PubMedCrossRefGoogle Scholar
  32. Cornelissen, B. J. C., Brederode, F. T., Moormann, R. J. M., and Bol, J. F., 1983a, Complete nucleotide sequence of alfalfa mosaic virus RNA1, Nucleic Acids Res. 11: 1253–1265.PubMedCrossRefGoogle Scholar
  33. Cornelissen, B. J. C., Brederode, F. T., Veeneman, G. H., van Boom, J. H., and Bol, J. F., 1983b, Complete nucleotide sequence of alfalfa mosiac virus RNA 2, Nucleic Acids Res. 11: 3019–3025.PubMedCrossRefGoogle Scholar
  34. Cross, R. K., 1983, Identification of a unique guanine-7-methyltransferase in Semliki Forest virus (SFV) infected cell extracts, Virology 130: 452–463.PubMedCrossRefGoogle Scholar
  35. Cross, R. K., and Gomatos, P. J., 1981, Concomitant methylation and synthesis in vitro of Semliki Forest virus (SFV) ss RNAs by a fraction from infected cells, Virology 114: 54 2554.Google Scholar
  36. Dalgarno, L., Rice, C. M., and Strauss, J. H., 1983, Ross River virus 26S RNA: Complete nucleotide sequence and deduced sequence of the encoded structural proteins, Virology 129: 170–187.PubMedCrossRefGoogle Scholar
  37. Dalrymple, J. M., Schlesinger, S., and Russell, P. K., 1976, Antigenic characterization of two Sindbis envelope glycoproteins separated by isoelectric focusing, Virology 69: 93–103.PubMedCrossRefGoogle Scholar
  38. Davis, R. W., Simon, M., and Davidson, N., 1971, Electron microscope heteroduplex methods for mapping regions of base sequence homology in nucleic acids, in: Methods of Enzymology, Vol. XX ( L. Grossman and K. Moldave, eds.), pp. 413–428, Academic Press, New York.Google Scholar
  39. Diamond, A., Dudock, B., and Hatfield, D., 1981, Structure and properties of a bovine liver UGA suppressor serine tRNA with a tryptophan anticodon, Cell 25: 497–506.PubMedCrossRefGoogle Scholar
  40. Domingo, E., Sabo, D., Taniguchi, T., and Weissmann, C., 1978, Nucleotide sequence heterogeneity of an RNA phage population, Cell 13: 735–744.PubMedCrossRefGoogle Scholar
  41. Dubin, D. T., Stollar, V., HsuChen, C.-C., Timko, K., and Guild, G. M., 1977, Sindbis virus messenger RNA: The 5’-termini and methylated residues of 26 and 42S RNA, Virology 77: 457–470.PubMedCrossRefGoogle Scholar
  42. Eaton, B. T., and Faulkner, P., 1972, Heterogeneity in the poly(A) content of the genome of Sindbis virus, Virology 50: 865–873.PubMedCrossRefGoogle Scholar
  43. Engelberg-Kulka, H., Dekel, L., Israeli-Reches, M., and Belfort, M., 1979, The requirement of nonsense suppression for the development of several phages, Mol. Gen. Genet. 170: 155–159.PubMedCrossRefGoogle Scholar
  44. France, J. K., Wyrick, B. C., and Trent, D. W., 1979, Biochemical and antigenic comparisons of the envelope glycoproteins of Venezuelan equine encephalomyelitis virus strains, J. Gen. Virol. 44: 725–740.PubMedCrossRefGoogle Scholar
  45. Franssen, H., Leunissen, J., Goldbach, R., Lomonossoff, G., and Zimmern, D., 1984, Homologous sequences in non-structural proteins from cowpea mosaic virus and picornaviruses, Eur. Mol. Biol. Org. J. 3: 855–861.Google Scholar
  46. Frey, T. K., and Strauss, J. H., 1978, Replication of Sindbis virus. VI. Poly(A) and poly(U) in virus-specific RNA species, Virology 86: 494–506.PubMedCrossRefGoogle Scholar
  47. Frey, T. K., Gard, D. L., and Strauss, J. H., 1979, Biophysical studies on circle formation by Sindbis virus 49S RNA, J. Mol. Biol. 132: 1–18.PubMedCrossRefGoogle Scholar
  48. Friedman, R. M., Levin, J. G., Grimley, P. M., and Berezesky, I. K., 1972, Membrane-associated replication complex in arbovirus infection, J. Virol. 10: 504–515.PubMedGoogle Scholar
  49. Fukuda, M., Ohno, T., Okada, Y., Otsuki, Y., and Takebe, I., 1978, Kinetics of biphasic reconstitution of tobacco mosaic virus in vitro, Proc. Natl. Acad. Sci. U.S.A. 75: 1727 1730.Google Scholar
  50. Fuller, F. J., and Marcus, P. I., 1980, Sindbis virus. I. Gene order of translation in vivo, Virology 107: 441–451.PubMedCrossRefGoogle Scholar
  51. Garoff, H., and Söderlund, H., 1978, The amphiphilic membrane glycoproteins of Semliki Forest virus are attached to the lipid bilayer by their COOH-terminal ends, J. Mol. Biol. 124: 535–549.PubMedCrossRefGoogle Scholar
  52. Garoff, H., Simons, K., and Renkonen, O., 1974, Isolation and characterization of the membrane proteins of Semliki Forest virus, Virology 61: 493–504.PubMedCrossRefGoogle Scholar
  53. Garoff, H., Simons, K., and Dobberstein, B., 1978, Assembly of the Semliki Forest virus membrane glycoproteins in the membrane of the endoplasmic reticulum in vitro, J. Mol. Biol. 124: 587–600.PubMedCrossRefGoogle Scholar
  54. Garoff, H., Frischauf, A.-M., Simons, K., Lehrach, H., and Delius, H., 1980a, The capsid protein of Semliki Forest virus has clusters of basic amino acids and prolines in its amino-terminal region, Proc. Natl. Acad. Sci. U.S.A. 77: 6376–6380.PubMedCrossRefGoogle Scholar
  55. Garoff, H., Frischauf, A.-M., Simons, K., Lehrach, H., and Delius, H., 1980b, Nucleotide sequence of cDNA coding for Semliki Forest virus membrane glycoproteins, Nature (London) 288: 236–241.CrossRefGoogle Scholar
  56. Geller, A. I., and Rich, A., 1980, A UGA termination suppression tRNATrP active in rabbit reticulocytes, Nature (London) 283: 41–46.CrossRefGoogle Scholar
  57. Gliedman, J. B., Smith, J. F., and Brown, D. T., 1975, Morphogenesis of Sindbis virus in cultured Aedes albopictus cells, J. Virol. 16: 913–926.PubMedGoogle Scholar
  58. Goelet, P., Lomonossoff, G. P., Butler, P. J. G., Akam, M. E., Gait, M. J., and Kam, J., 1982, Nucleotide sequence of tobacco mosaic virus RNA, Proc. Natl. Acad. Sci. U.S.A. 79: 5818–5822.PubMedCrossRefGoogle Scholar
  59. Gomatos, P. J., Kääriäinen, L., Keränen, S., Ranki, M., and Sawicki, D. L., 1980, Semliki Forest virus replication complex capable of synthesizing 42S and 26S nascent RNA chains, J. Gen. Virol. 49: 61–69.PubMedCrossRefGoogle Scholar
  60. Grantham, R., Gautier, C., Gouy, M., Jacobzone, M., and Mercier, R., 1981, Codon catalog usage is a genome strategy modulated for gene expressivity, Nucleic Acids Res. 9: r43 - r74.PubMedCrossRefGoogle Scholar
  61. Grimley, P. M., Berezesky, I. K., and Friedman, R. M., 1968, Cytoplasmic structures associated with an arbovirus infection: Loci of viral ribonucleic acid synthesis, J. Virol. 2: 1326–1338.PubMedGoogle Scholar
  62. Grimley, P. M., Levin, J. G., Berezesky I. K., and Friedman, R. M., 1972, Specific membranous structures associated with the replication of Group A arboviruses, J. Virol. 10: 492–503.PubMedGoogle Scholar
  63. Gupta, K. C., and Kingsbury, D. W., 1984, Complete sequences of the intergenic and mRNA start signals in the Sendai virus genome: Homologies with the genome of vesicular stomatitis virus, Nucleic Acids Res. 12: 3829–3841.PubMedCrossRefGoogle Scholar
  64. Hahn, C. S., Strauss, E. G., and Strauss, J. H., 1985, Sequence analysis of three Sindbis virus mutants temperature-sensitive in the capsid protein autoprotease, Proc. Natl. Acad. Sci. U.S.A. 82: 4648–4652.PubMedCrossRefGoogle Scholar
  65. Haseloff, J., Goelet, P, Zimmern, D., Ahlquist, P., Dasgupta, R., and Kaesberg, P., 1984, Striking similarities in amino acid sequence among nonstructural proteins encoded by RNA viruses that have dissimilar genomic organization, Proc. Natl. Acad. Sci. U.S.A. 81: 4358–4362.PubMedCrossRefGoogle Scholar
  66. Hashimoto, K., Erdei, S., Keränen, S., Saraste, J., and Kääriäinen, L., 1981, Evidence for a separate signal sequence for the carboxy-terminal envelope glycoprotein El of Semliki Forest virus, J. Virol. 38: 34–40.PubMedGoogle Scholar
  67. Hatfield, D. L., Dudock, B. S., and Eden, F. C., 1983, Characterization and nucleotide sequence of a chicken gene encoding an opal suppressor tRNA and its flanking DNA segments, Proc. Natl. Acad. Sci. U.S.A. 80: 4940–4944.PubMedCrossRefGoogle Scholar
  68. Hefti, E., Bishop, D. H. L., Dubin, D. T., and Stollar, V., 1976, 5’Nucleotide sequence of Sindbis viral RNA, J. Virol. 17: 149–159.Google Scholar
  69. Helenius, A., Fries, E., Garoff, H., and Simons, K., 1976, Solubilization of the Semliki Forest virus membrane with sodium deoxycholate, Biochim. Biophys. Acta 436: 319–334.PubMedCrossRefGoogle Scholar
  70. Hirsh, D., and Gold, L., 1971, Translation of the UGA triplet in vitro by tryptophan transfer RNA’s, J. Mol. Biol. 58: 459–468.PubMedCrossRefGoogle Scholar
  71. Holland, J. J., Kennedy, S. I. T., Semler, B. L., Jones, C. L., Roux, L., and Grabau, E. A., 1980, Defective interfering RNA viruses and the host-cell response, in: Comprehensive Virology, Vol. 16 ( H. Fraenkel-Conrat and R. R. Wagner, eds.), pp. 137–192, Plenum Press, New York.Google Scholar
  72. Holland, J., Spindler, K., Horodyski, F., Grabau, E., Nichol, S., and VandePol, S., 1982, Rapid evolution of RNA genomes, Science 215: 1577–1585.PubMedCrossRefGoogle Scholar
  73. Hsu, M. T., Kung, H. J., and Davidson, N., 1973, An electron microscope study of Sindbis virus RNA, Cold Spring Harbor Symp. Quant. Biol. 38: 943–950.CrossRefGoogle Scholar
  74. HsuChen, C.-C., and Dubin, D. T., 1976, Di-and trimethylated cogeners of 7-methylguanine in Sindbis virus mRNA, Nature (London) 264: 190–191.CrossRefGoogle Scholar
  75. Huth, A., Rapoport, T. A., and Kääriäinen, L., 1984, Envelope proteins of Semliki Forest virus synthesized in Xenopus oocytes are transported to the cell surface, Eur. Mol. Biol. Org. J. 3: 767–771.Google Scholar
  76. Ishida, I., Simizu, B., Koizumi, S., Oya, A., and Yamada, M., 1981, Nucleoside triphosphate phosphohydrolase produced in BHK cells infected with Western equine encephalitis virus is probably associated with the 82 K dalton nonstructural polypeptide, Virology 108: 13–20.PubMedCrossRefGoogle Scholar
  77. Johnston, R. E., and Bose, H. R., 1972, An adenylate-rich segment in the virion RNA of Sindbis virus, Biochem. Biophys. Res. Commun. 46: 712–718.PubMedCrossRefGoogle Scholar
  78. Jones, K. J., Scupham, R. K., Pfeil, J. A., Wan, K., Sagik, B. P., and Bose, H. R., 1977, Interaction of Sindbis virus glycoproteins during morphogenesis, J. Virol. 21: 778–787.PubMedGoogle Scholar
  79. Kääriäinen, L., Simons, K., and von Bonsdorff, C.-H., 1969, Studies in subviral components of Semliki Forest virus, Ann. Med. Exp. Fenn. 17: 25–248.Google Scholar
  80. Kääriäinen, L., Sawicki, D., and Gomatos, P. J., 1978, Cleavage defect in the nonstructural polyprotein of Semliki Forest virus has two separate effects on viral RNA synthesis, J. Gen. Virol. 39: 463–473.PubMedCrossRefGoogle Scholar
  81. Kamer, G., and Argos, P., 1984, Primary structural comparison of RNA-dependent polymerases from plant, animal and bacterial viruses, Nucleic Acids Res. 12: 7269–7282.PubMedCrossRefGoogle Scholar
  82. Kennedy, S. I. T., 1976, Sequence relationships between the genomic and the intracellular RNA species of standard and defective-interfering Semliki Forest virus, J. Mol. Biol. 108: 491–511.PubMedCrossRefGoogle Scholar
  83. Keränen, S., and Kääriäinen, L., 1979, Functional defects of RNA-negative temperature-sensitive mutants of Sindbis and Semliki Forest virus, J. Virol. 32: 19–29.PubMedGoogle Scholar
  84. Keränen, S., and Ruohonen, L., 1983, Nonstructural proteins of Semliki Forest virus: Synthesis, processing and stability in infected cells, J. Virol. 47: 505–515.PubMedGoogle Scholar
  85. Koizumi, S., Simizu, B., Ishida, I., Oya, A., and Yamada, M., 1979, Inhibition of DNA synthesis in BHK cells infected with Western equine encephalitis virus. 2. Properties of the inhibitory factor of DNA polymerase induced in infected cells, Virology 98: 439–447.Google Scholar
  86. Kondor-Koch, C., Riedel, H., Söderberg, K., and Garoff, H., 1982, Expression of the structural proteins of Semliki Forest virus from cloned cDNA microinjected into the nucleus of the baby hamster kidney cells, Proc. Natl. Acad. Sci. U.S.A. 79: 4525–4529.PubMedCrossRefGoogle Scholar
  87. Kowal, K. J., and Stollar, V., 1981, Temperature-sensitive host-dependent mutants of Sindbis virus, Virology 114: 140–148.PubMedCrossRefGoogle Scholar
  88. Kyte, J., and Doolittle, R. F., 1982, A simple method for displaying the hydropathic character of a protein, J. Mol. Biol. 157: 105–132.PubMedCrossRefGoogle Scholar
  89. Lachmi, B., and Kääriäinen, L., 1976, Sequential translation of nonstructural proteins in cells infected with a Semliki Forest virus mutant, Proc. Natl. Acad. Sci. U.S.A. 73: 19361940.Google Scholar
  90. Lachmi, B., Glanville, N., Keränen, S., and Kääriäinen, L., 1975, Tryptic peptide analysis of nonstructural and structural precursor proteins from Semliki Forest virus mutant-infected cells. J. Virol. 16: 1615–1629.PubMedGoogle Scholar
  91. Lehtovaara, P., Söderlund, H., Keränen, S., Pettersson, R. F., and Kääriänien, L., 1981, 18S defective interfering RNA of Semliki Forest virus contains a triplicated linear repeat, Proc. Natl. Acad. Sci. U.S.A. 78: 5353–5357.Google Scholar
  92. Lehtovaara, P., Söderlund, H., Keränen, S., Pettersson, R. F., and Kääriäinen, L., 1982, Extreme ends of the genome are conserved and rearranged in the defective interfering RNAs of Semliki Forest virus, J. Mol. Biol. 156: 731–748.PubMedCrossRefGoogle Scholar
  93. Lopez, S., Bell, J. R., Strauss, E. G., and Strauss, J. H., 1985, The nonstructural proteins of Sindbis virus as studied with an antibody specific for the C terminus of the nonstructural readthrough polyprotein, Virology 141: 235–247.PubMedCrossRefGoogle Scholar
  94. Martin, E. M., and Sonnabend, J. A., 1967, Ribonucleic acid polymerase catalyzing synthesis of double-stranded arbovirus ribonucleic acid, J. Virol. 1: 97–109.PubMedGoogle Scholar
  95. Mayne, J. T., Rice, C. M., Strauss, E. G., Hunkapiller, M. W., and Strauss, J. H., 1984, Biochemical studies of the maturation of the small Sindbis virus glycoprotein E3, Virology 134: 338–357.PubMedCrossRefGoogle Scholar
  96. Michel, M. R., and Gomatos, P. J., 1973, Semliki Forest virus-specific RNAs synthesized in vitro by enzyme from infected BHK cells, J. Virol. 11: 900–914.PubMedGoogle Scholar
  97. Monroe, S. S., and Schlesinger, S., 1983, RNAs from two independently isolated defective interfering particles of Sindbis virus contain a cellular tRNA sequence at their 5’ ends, Proc. Natl. Acad. Sci. U.S.A. 80: 3279–3283.PubMedCrossRefGoogle Scholar
  98. Monroe, S. S., Ou, J.-H., Rice, C. M., Schlesinger, S., Strauss, E. G., and Strauss, J. H., 1982, Sequence analysis of cDNA’s derived from the RNA of Sindbis virions and of defective interfering particles, J. Virol. 41: 153–162.PubMedGoogle Scholar
  99. Oker-Blom, C., 1984, The gene order for Rubella virus structural proteins is NH2-C-E2–E1COOH, J. Virol. 51: 354–358.PubMedGoogle Scholar
  100. Oker-Blom, C., Kalkkinen, N., Kääriäinen, L., and Pettersson, R. F., 1983, Rubella virus contains one capsid protein and three envelope glycoproteins, E1, E2a, and E2b, J. Virol. 46: 964–973.PubMedGoogle Scholar
  101. Oker-Blom, C., Ulmanen, I., Kääriäinen, and Pettersson, R. F., 1984, Rubella virus 40S genome RNA specifies a 24S subgenomic mRNA that codes for a precursor to structural proteins, J. Virol. 49: 403–408.Google Scholar
  102. Otsuki, Y., Takabe, I., Ohno, T., Fukuda, M., and Okada, Y., 1977, Reconstitution of tobacco mosaic virus rods occurs bidirectionally from an internal initiation region: Demonstration by electron microscopic serology, Proc. Natl. Acad. Sci. U.S.A. 74: 1913–1917.PubMedCrossRefGoogle Scholar
  103. Ou, J.-H., Strauss, E. G., and Strauss, J. H., 1981, Comparative studies of the 3’ terminal sequences of several alphavirus RNAs, Virology 109: 281–289.PubMedCrossRefGoogle Scholar
  104. Ou, J.-H., Rice, C. M., Dalgarno, L., Strauss, E. G., and Strauss, J. H., 1982a, Sequence studies of several alphavirus genomic RNAs in the region containing the start of the subgenomic RNA, Proc. Natl. Acad. Sci. U.S.A. 79: 5235–5239.PubMedCrossRefGoogle Scholar
  105. Ou, J.-H., Trent, D. W., and Strauss, J. H., 1982b, The 3’-non-coding regions of alphavirus RNAs contain repeating sequences, J. Mol. Biol. 156: 719–730.PubMedCrossRefGoogle Scholar
  106. Ou; J.-H., Strauss, E. G., and Strauss, J. H., 1983, The 5’-terminal sequences of the genomic RNAs of several alphaviruses, J. Mol. Biol. 168: 1–15.PubMedCrossRefGoogle Scholar
  107. Palmenberg, A. C., Pallansch, M. A., and Rueckert, R. R., 1979, Protease required for processing picornaviral coat protein resides in the viral replicase gene, J. Virol. 32: 770–778.PubMedGoogle Scholar
  108. Pedersen, C. E., Jr., Marker, S. C., and Eddy, G. A., 1974, Comparative electrophoretic studies on the structural proteins of selected Group A arboviruses, Virology 60: 312–314.PubMedCrossRefGoogle Scholar
  109. Pelham, H. R. B., 1978, Leaky UAG termination codon in tobacco mosaic virus RNA, Nature London) 272: 469–471.CrossRefGoogle Scholar
  110. Racaniello, V. R., and Baltimore, D., 1981, Cloned poliovirus complementary DNA is infectious in mammalian cells, Science 214: 916–919.PubMedCrossRefGoogle Scholar
  111. Raghow, R. S., Grace, T. D. C., Filshie, B. K., Bartley, W., and Dalgarno, L., 1973, Ross River virus replication in cultured mosquito and mammalian cells: Virus growth and correlated ultrastructural changes, J. Gen. Virol. 21: 109–122.PubMedCrossRefGoogle Scholar
  112. Ranki, M,. and Kääriäinen, L., 1979, Solubilized RNA replication complex from Semliki Forest virus-infected cells, Virology 98: 298–307.PubMedCrossRefGoogle Scholar
  113. Reanney, D. C., 1982, The evolution of RNA viruses, Annu. Rev. Microbiol. 36:47–73. Rice, C. M., and Strauss, J. H., 1981a, Nucleotide sequence of the 26S mRNA of Sindbis virus and deduced sequence of the encoded virus structural proteins, Proc. Natl. Acad. Sci. U.S.A. 78: 2062–2066.Google Scholar
  114. Rice, C. M., and Strauss, J. H., 1981 b, Synthesis, cleavage, and sequence analysis of DNA complementary to the 26S messenger RNA of Sindbis virus, J. Mol. Biol. 150: 315–340.Google Scholar
  115. Rice, C.M., and Strauss, J. H., 1982, Association of Sindbis virion glycoproteins and their precursors, J. Mol. Biol. 154: 325–348.PubMedCrossRefGoogle Scholar
  116. Rice, C. M., Bell, J. R,. Hunkapiller, M. W., Strauss, E. G., and Strauss, J. H., 1982, Isolation and characterization of the hydrophobic COOH-terminal domains of the Sindbis virion glycoproteins, J. Mol. Biol. 154: 355–378.Google Scholar
  117. Rice, C. M., Franke, C. A., Strauss, J. H., and Hruby, D. E., 1985, Expression of Sindbis virus structural proteins via recombinant vaccinia virus: Synthesis, processing, and incorporation into mature Sindbis virions J. Virol. 56: 227–239.PubMedGoogle Scholar
  118. Riedel, H., Lehrach, H., and Garoff, H., 1982, Nucleotide sequence at the junction between the nonstructural and the structural genes of the Semliki Forest virus genome, J. Virol. 42: 725–729.PubMedGoogle Scholar
  119. Rose, J. K., Doolittle, R. F., Anilionis, A., Curtis, P.J., and Wunner, W. H., 1982, Homology between the glycoproteins of vesicular stomatitis virus and rabies virus, J. Virol. 43: 361–364.PubMedGoogle Scholar
  120. Russell, G. J., Walker, P. M. B., Elton, R. A., and Subak-Sharpe, J. H., 1976, Doublet frequency analysis of fractionated vertebrate nuclear DNA, J. Mol. Biol. 108: 1–23.PubMedCrossRefGoogle Scholar
  121. Saraste, J., von Bonsdorff, C.-H., Hashimoto, K., Kääriäinen, L., and Keränen, S., 1980, Semliki Forest virus mutants with temperature-sensitive transport defect of envelope proteins, Virology 100: 229–245.PubMedCrossRefGoogle Scholar
  122. Sawicki, D. L., and Gomatos, P. J., 1976, Replication of Semliki Forest virus: Polyadenylate in plus-strand RNA and polyuridylate in minus-strand RNA, J. Virol. 20: 446–464.PubMedGoogle Scholar
  123. Sawicki, D. L., and Sawicki, S. G., 1980, Short-lived minus-strand polymerase for Semliki Forest virus, J. Virol. 34: 108–118.PubMedGoogle Scholar
  124. Sawicki, D. L., and Sawicki, S. G., 1985, Functional analysis of the A complementation group mutants of Sindbis HR virus, Virology 144: 20–34.PubMedCrossRefGoogle Scholar
  125. Sawicki, D. L., Kääriäinen, L., Lambek, C., and Gomatos, P. J., 1978, Mechanism for control of synthesis of Semliki Forest virus 26S and 42S RNA, J. Virol. 25: 19–27.PubMedGoogle Scholar
  126. Sawicki, D. L., Sawicki, S. G., Keränen, S., and Kääriäinen, L., 1981, Specific Sindbis virus-coded function for minus-strand RNA synthesis, J. Virol. 39: 348–358.PubMedGoogle Scholar
  127. Sawicki, S. G., Sawicki, D. L., Kääriäinen, L., and Keränen, S., 1981, A Sindbis virus mutant temperature-sensitive in the regulation of minus-strand RNA synthesis, Virology 115: 161–172.PubMedCrossRefGoogle Scholar
  128. Schlesinger, M. J., and Schlesinger, S., 1973, Large-molecular-weight precursors of Sindbis virus proteins, J. Virol. 11: 1013–1016.PubMedGoogle Scholar
  129. Schlesinger, M. J., and Kääriäinen, L., 1980, Translation and processing of alphavirus proteins, in: The Togaviruses ( R. W. Schlesinger, ed.), pp. 371–392, Academic Press, New York.Google Scholar
  130. Schlesinger, M. J., Schlesinger, S., and Burge, B W., 1972, Identification of a second glycoprotein in Sindbis virus, Virology 47: 539–541.PubMedCrossRefGoogle Scholar
  131. Schmaljohn, A. L., Johnson, E. D., Dalrymple, J. M., and Cole, G. A., 1982, Non-neutralizing monoclonal antibodies can prevent lethal alphavirus encephalitis, Nature (London) 297: 70–72.CrossRefGoogle Scholar
  132. Schupham, R. K., Jones, K. J., Sagik, B. P., and Bose, H. R., Jr., 1977, Virus-directed post-translational cleavage in Sindbis virus-infected cells, J. Virol. 22: 568–571.PubMedGoogle Scholar
  133. Sefton, B. M., 1977, Immediate glycosylation of Sindbis virus membrane proteins, Cell 10: 659–668.PubMedCrossRefGoogle Scholar
  134. Shinnick, T. M., Lerner, R. A., and Sutcliffe, J. G., 1981, Nucleotide sequence of Moloney murine leukaemia virus, Nature (London) 293: 543–548.CrossRefGoogle Scholar
  135. Simizu, B., Yamamoto, K., Hashimoto, K., and Ogata, T., 1984, Structural proteins of chikungunya virus, J. Virol. 51: 254–258.PubMedGoogle Scholar
  136. Simmons, D. T., and Strauss, J. H., 1972, Replication of Sindbis virus. II. Multiple forms of double-stranded RNA isolated from infected cells, J. Mol. Biol. 71: 615–631.PubMedCrossRefGoogle Scholar
  137. Simmons, D. T., and Strauss, J. H., 1974, Translation of Sindbis virus 26S RNA and 49S RNA in lysates of rabbit reticulocytes, J. Mol. Biol. 86: 397–409.PubMedCrossRefGoogle Scholar
  138. Söderlund, H., 1973, Kinetics of formation of Semliki Forest virus nucleocapsid, Intervirology 1: 354–361.PubMedCrossRefGoogle Scholar
  139. Spector, D. H., and Baltimore, D., 1974, Requirement of 3’-terminal poly(adenylic acid) for the infectivity of poliovirus RNA, Proc. Natl. Acad. Sci. U.S.A. 71: 2983–2987.PubMedCrossRefGoogle Scholar
  140. Sreevalsan, T., and Yin, F. H., 1969, Sindbis virus induced viral ribonucleic acid polymerase, J. Virol. 3: 599–604.PubMedGoogle Scholar
  141. Stark, C., and Kennedy, S. I. T., 1978, The generation and propagation of defective-interfering particles of Semliki Forest virus in different cell types, Virology 89: 285–299.PubMedCrossRefGoogle Scholar
  142. Stollar, V., 1980, Togaviruses in cultured arthropod cells, in: The Togaviruses ( R. W. Schlesinger, ed.), pp. 583–621, Academic Press, New York.Google Scholar
  143. Strauss, E. G., 1978, Mutants of Sindbis virus. III. Host polypeptides present in purified HR and ts103 virus particles, J. Virol. 28: 466–474.PubMedGoogle Scholar
  144. Strauss, E. G., and Strauss, J. H., 1980, Mutants of alphaviruses: Genetics and physiology, in: The Togaviruses ( R. W. Schlesinger, ed.), pp. 393–426, Academic Press, New York.Google Scholar
  145. Strauss, E. G., and Strauss, J. H., 1983, Replication strategies of the single stranded RNA viruses of eukaryotes, Curr. Top. Microbiol. Immunol. 105: 1–98.PubMedCrossRefGoogle Scholar
  146. Strauss, E. G., and Strauss, J. H., 1985, Assembly of enveloped animal viruses, in: Virus Structure and Assembly ( S. Casjens, ed.), pp. 205–234, Jones and Bartlett, Portola Valley, California.Google Scholar
  147. Strauss, E. G., Birdwell, C. R., Lenches, E. M., Staples, S. E., and Strauss, J. H., 1977, Mutants of Sindbis virus. II. Characterization of a maturation-defective mutant, ts103, Virology 82: 122–149.CrossRefGoogle Scholar
  148. Strauss, E. G., Rice, C. M., and Strauss, J. H., 1983, Sequence coding for the alphavirus nonstructural proteins is interrupted by an opal termination codon, Proc. Natl. Acad. Sci. U.S.A. 80: 5271–5275.PubMedCrossRefGoogle Scholar
  149. Strauss, E. G., Rice, C. M., and Strauss, J. H., 1984, Complete nucleotide sequence of the genomic RNA of Sindbis virus, Virology 133: 92–110.PubMedCrossRefGoogle Scholar
  150. Strauss, J. H., and Strauss, E. G., 1977, Togaviruses, in: The Molecular Biology of Animal Viruses, Vol. I ( D. P. Nayak, ed.), pp. 111–166, Marcel Dekker, New York.Google Scholar
  151. Strauss, J. H., and Strauss, E. G., 1985, Antigenic structure of Togaviruses, in: Immunochemistry of Viruses—The Basis for Serodiagnosis and Vaccines (M. H. V. van Regen-mortel and A. R. Neurath, eds.), pp. 407–424, Chapter 22, Elsevier, Amsterdam.Google Scholar
  152. Strauss, J. H., Burge, B. W., Pfefferkorn, E. R., and Darnell, J. E., 1968, Identification of the membrane protein and “core” protein of Sindbis virus, Proc. Natl. Acad. Sci. U.S.A. 59: 533–537.PubMedCrossRefGoogle Scholar
  153. Strauss, J. H., Burge, B. W., and Darnell, J. E., 1969, Sindbis virus infection of chick and hamster cells: Synthesis of virus-specific proteins, Virology 37: 367–376.PubMedCrossRefGoogle Scholar
  154. Tinoco, I., Borer, P. N., Dengler, B., Levine, M. D., Uhlenbeck, O. C., Crothers, D. M., and Gralla, J., 1973, Improved estimation of secondary structure in ribonucleic acids, Nature (London) New Biol. 246: 40–41.Google Scholar
  155. Toh, H., Hayashida, H., and Miyata, T., 1983, Sequence homology between retroviral reverse transcriptase and putative polymerases of hepatitis B virus and cauliflower mosaic virus, Nature (London) 305: 827–829.CrossRefGoogle Scholar
  156. Tsiang, M., Monroe, S. S., and Schlesinger, S., 1985, Studies of defective interfering RNAs of Sindbis virus with and without rRNAAsP sequences at their 5’ termini, J. Virol. 54: 3844.Google Scholar
  157. Ulmanen, I., Söderlund, H., and Kääriäinen, L., 1976, Semliki Forest virus capsid protein associates with the 60S ribosomal subunit in infected cells, J. Virol. 20: 203–210.PubMedGoogle Scholar
  158. Van Steeg, H., Kasperaitis, M., Voorma, H. O., and Benne, R., 1984, Infection of neuro-blastoma cells by Semliki Forest virus: The interference of viral capsid protein with the binding of host messenger RNAs into initiation complexes is the cause of the shutoff of host protein synthesis, Eur. J. Biochem. 138: 473–478.PubMedCrossRefGoogle Scholar
  159. Von der Helm, K., 1977, Cleavage of Rous sarcoma viral polypeptide precursor into internal structural proteins in vitro involves viral protein p15, Proc. Natl. Acad. Sci. U.S.A.. 74: 911–915.Google Scholar
  160. Wecker, E., 1959, The extraction of infectious virus nucleic acid with hot phenol, Virology 7: 241–243.PubMedCrossRefGoogle Scholar
  161. Weiner, A. M., and Weber, K., 1971, Natural readthrough at the UGA termination signal of Qß coat protein cistron, Nature (London) New Biol. 234: 206–209.Google Scholar
  162. Welch, W. J., and Sefton, B. M., 1979, Two small virus-specific polypeptides are produced during infection with Sindbis virus, J. Virol. 29: 1186–1195.PubMedGoogle Scholar
  163. Welch, W. J., Sefton, B. M., and Esch, F. S., 1981, Amino-terminal sequence analysis of alphavirus polypeptides, J. Virol. 38: 968–972.PubMedGoogle Scholar
  164. Wengler, G., and Wengler, G., 1974, Studies on the polyribosome-associated RNA in BHK21 cells infected with Semliki Forest virus, Virology 59: 21–35.PubMedCrossRefGoogle Scholar
  165. Wengler, G., Wengler, G., and Filipe, A. R., 1977, A study of nucleotide sequence homology between the nucleic acids of different alphaviruses, Virology 78: 124–134.PubMedCrossRefGoogle Scholar
  166. Wengler, G., Wengler, G., and Gross, H. J., 1979, Replicative form of Semliki Forest virus RNA contains an unpaired guanosine, Nature (London) 282: 754–756.CrossRefGoogle Scholar
  167. Wengler, G., Boege, U., Wengler, G., Bischoff, H., and Wahn, K., 1982, The core protein of the alphavirus Sindbis virus assembles into core-like nucleoproteins with the viral gen-orne RNA and with other single-stranded nucleic acids in vitro, Virology 118: 401–410.CrossRefGoogle Scholar
  168. Wirth, D. F., Katz, F., Small, B, and Lodish, H. F., 1977, How a single Sindbis virus mRNA directs the synthesis of one soluble protein and two integral membrane glycoproteins, Cell 10: 253–263.PubMedCrossRefGoogle Scholar
  169. Ziemiecki, A., Garoff, H., and Simons, K., 1980, Formation of the Semliki Forest virus membrane glycoprotein complexes in the infected cell, J. Gen. Virol. 50: 111–123.PubMedCrossRefGoogle Scholar
  170. Zimmern, D., 1977, The nucleotide sequence at the origin for assembly on tobacco mosaic virus RNA, Cell 11: 463–482.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Ellen G. Strauss
    • 1
  • James H. Strauss
    • 1
  1. 1.Division of BiologyCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations