Advertisement

Polar/Polar, Covalent/Covalent and Covalent/Polar Semiconductor Superlattices

  • S. Ciraci
Part of the NATO ASI Series book series (NSSB, volume 189)

Abstract

A comparative study of polar/polar, covalent/covalent, and covalent/polar semiconductor superlattices is presented. Based on the calculated formation energy, charge density and electronic structure, the effects of the superlattice parameters on the overall properties (stability, quantum well structure, indirectness of the band gap etc.) are discussed. Geometry optimized total energy calculations indicate that the formation energy of all superlattices studied is positive implying that the separation (or segregation) into constituent crystals are favored. The contribution of the superlattice periodicity, lattice mismatch, and polarity of sublattices in the formation energy vary depending upon the type of the superlattice. The electronic structure is found to depend strongly on the sublattice periodicity when it is small.

Keywords

Formation Energy Interface Charge Band Alignment Band Discontinuity Tetragonal Unit Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L.Esaki and R. Tsu, IBM J.Res. Dev. 14, 61 (1970).CrossRefGoogle Scholar
  2. 2.
    R. Dingle, A.C. Gossard and W.Wiegmann, Phys. Rev. Lett. 21, 1327 (1975).ADSCrossRefGoogle Scholar
  3. 3.
    R. Dingle, in Festkörperprobleme, Vol. XV of Advances in Solid State Physics, edited by H.J.Queisser ( Pergamon, Oxford 1975 ) p. 21.Google Scholar
  4. 4.
    R. Dingle, H.L.Störmer, A.G.Gossard, and W.Wiegmann, App.Phys.Lett. 33, 665 (1978).ADSCrossRefGoogle Scholar
  5. 5.
    E.Kasper, H.J.Herzog, and H.Kimble, App.Phys. 8, 199 (1975).ADSCrossRefGoogle Scholar
  6. 6.
    A.T.Fiory, J.C.Bean, L.C.Feldman, and I.K.Robinson, J.App.Phys. 56, 1227 (1984).ADSCrossRefGoogle Scholar
  7. 7.
    T.P. Pearsall, J.Bevk, L.C.Feldman, J.M.Bonar, J.P.Mannaerts, and A.Ourmazd, Phys. Rev. Lett. 58, 729 (1987).ADSCrossRefGoogle Scholar
  8. 8.
    S.Ciraci and I.P.Batra, Phys. Rev. Lett. 58, 2114 (1987).ADSCrossRefGoogle Scholar
  9. 9.
    S.Ciraci and I.P.Batra, Phys. Rev. B36, 1225 (1987).ADSCrossRefGoogle Scholar
  10. 10.
    S.Ciraci and I.P. Batra, Phys. Rev. B (in press).Google Scholar
  11. 11.
    I.P.Batra, S.Ciraci and E.Ozbay, Phys. Rev. B.Google Scholar
  12. 12.
    S.Ciraci, I.P.Batra and E.Tekman, Phys. Rev. B.Google Scholar
  13. 13.
    S.Ciraci, O.Gülseren and S.Ellialtioglu, Solid State Commun. 65, 1285 (1988).ADSCrossRefGoogle Scholar
  14. 14.
    P.Hohenberg and W.Kohn, Phys. Rev. 136, B864 (1964).MathSciNetADSCrossRefGoogle Scholar
  15. W.Kohn and L. J. Sham, Phys. Rev. A1133 (1965).Google Scholar
  16. 15.
    J.Ihm, A.Zunger, and M.L.Cohen, J.Phys. C12, 4409 (1979).ADSGoogle Scholar
  17. 16.
    G.B.Bachelet, D.R.Hamann, and M.Schlüter, Phys. Rev. B26, 4199 (1982).ADSCrossRefGoogle Scholar
  18. 17.
    D.M. Ceperley and B.J. Alder, Phys. Rev. Lett. 45, 566 (1980)ADSCrossRefGoogle Scholar
  19. J.Perdew and A.Zunger, Phys. Rev. B23, 5048 (1981).ADSCrossRefGoogle Scholar
  20. 18.
    I.P.Batra, S.Ciraci, G.P.Srivastava, J.S.Nelson and C.Y.Fong, Phys.Rev. B34, 8246 (1986).ADSCrossRefGoogle Scholar
  21. 19.
    T.S.Kuan, T.F.Kuech, W.I.Wang and E.L.Wilki, Phys. Rev. Lett. 54, 201 (1985).ADSCrossRefGoogle Scholar
  22. 20.
    G.P.Srivastava, J.L.Martin and A.Zunger, Phys. Rev. B 31, 2561 (1985).ADSCrossRefGoogle Scholar
  23. 21.
    D.M.Bylander and L.Kleinman, Phys.Rev. B34, 5680 (1986).Google Scholar
  24. 22.
    D.M.Wood, S.-H.Wei and A.Zunger, Phys.Rev.Lett. 58, 1123 (1987).ADSCrossRefGoogle Scholar
  25. 23.
    K.Kunc and I.P.Batra (to be published).Google Scholar
  26. 24.
    I.P.Batra, S.Ciraci and J.S.Nelson, J.Vac.Sci.Technol. B5, 1300 (1987).CrossRefGoogle Scholar
  27. 25.
    M.Jaros and K.B.Wong, J.Phys. C17, L765 (1984).MathSciNetADSGoogle Scholar
  28. M.Jaros, K.B.Wong and M.A.Gell, Phys.Rev. B31, 1205 (1985).ADSCrossRefGoogle Scholar
  29. 26.
    E.Finkman, M.D.Sturge„ and M.C.Tamargo, App.Phys.Lett. 49, 1299 (1986).ADSCrossRefGoogle Scholar
  30. 27.
    M.A. Gell, D. Ninno, M. Jaros, and D.C. Herbert, Phys. Rev. B34, 2416 (1986).ADSCrossRefGoogle Scholar
  31. 28.
    W.A.Harrison, J.Vac.Sci.Technol. 14, 1016 (1977);ibid B3, 1231 (1985).Google Scholar
  32. 29.
    G.Abstreiter, H.Brugger, T.Wolf, H.Jorke, and H.Herzog, Phys. Rev.Lett. 54, 2441 (1985).ADSCrossRefGoogle Scholar
  33. 30.
    C.H.Van de Walle and R.M.Martin, J.Vac.Sci.Technol. B3, 1256(1985);ibid. Phys. Rev. B34, 5261 (1986).Google Scholar
  34. 31.
    S.Froyen, D.M.Wood and A.Zunger, Phys Rev. B36, 4547 (1987).Google Scholar
  35. 32.
    A.Ourmazd and J.C.Bean, Phys. Rev.Lett. 55, 765 (1985).ADSCrossRefGoogle Scholar
  36. 33.
    J.L.Martins and A.Zunger, Phys. Rev. Lett. 56, 1400 (1986).ADSCrossRefGoogle Scholar
  37. 34.
    D.Streit, R.A.Metzger and F.G.Allan, App.Phys. Lett., 44, 234 (1984).ADSCrossRefGoogle Scholar
  38. 35.
    H.P.Zeindl, T.Wegehaupt, (.Eisele, H.Oppolzer, H.Reisinger, G.Temple and F.Koch, App. Phys. Lett. 50, 1164 (1987).Google Scholar
  39. 36.
    H.Kroemer, Journal of Crystal Growth 81, 193 (1987).ADSCrossRefGoogle Scholar
  40. 37.
    P.R.Pukite and P.I.Cohen, Journal of Crystal Growth 81, 214 (1987).ADSCrossRefGoogle Scholar
  41. 38.
    W.A.Harrison and S.Ciraci, Phys. Rev. B10, 1516 (1974).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • S. Ciraci
    • 1
  1. 1.Department of PhysicsBilkent UniversityBilkentAnkaraTurkey

Personalised recommendations