Characterization and Design of Semiconductor Lasers Using Strain

  • A. R. Adams
  • K. C. Heasman
  • E. P. O’Reilly
Part of the NATO ASI Series book series (NSSB, volume 189)


Hydrostatic pressure increases the direct band gap of III-V semiconductors and decreases the sub-band gaps to the conduction band satellite minima. By contrast uniaxial stress removes the cubic symmetry of the lattice and can significantly alter the properties of the valence band which is relatively insensitive to hydrostatic pressure. In this paper we consider how these effects can be applied to a variety of semiconductor lasers. Hydrostatic pressure tunes the operating wavelength of Fabry-Perot lasers. On the other hand, in distributed feedback (DFB) lasers, the wavelength is held almost constant against changes in pressure by the period of grating. Here we show how measurements of the threshold current with pressure in these different structures give information about the internal loss mechanisms occuring in long wavelength devices (1.3–1.65μm) which are responsible for the To problem. Having characterised these mechanisms we suggest laser structures with inbuilt strain in quantum well structures which should have greatly improved performance. Pressure measurements on GaAs lasers indicate that there are no significant optoelectronic loss mechanisms in standard heterostructure devices or quantum well lasers with wide wells. This is not the case for narrow well devices where considerable losses can occur particularly at high pressure. A model for this effect is tentatively suggested.


Threshold Current Auger Recombination Threshold Current Density Confinement Layer Carrier Leakage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Horikoshi Y, p.379ff in “GaInAsP alloy semiconductors”, T P Pearsall, ed., J Wiley and Sons, New York/London (1982).Google Scholar
  2. 2.
    Asada M, Adams A R, Stubkjaer K E, Suematsu Y, Itaya Y and Arai S, IEEE JQE 17 (5): 611 (1981).Google Scholar
  3. 3.
    Adams A R, Asada M, Suematsu Y and Arai S, Jpn J Appl Phys 19: L621 (1980).ADSCrossRefGoogle Scholar
  4. 4.
    Dutta N K and Nelson R J, J Appl Phys 53: 74 (1982).ADSCrossRefGoogle Scholar
  5. 5.
    Yano M, Imai H and Takusagawa M, IEEE JQE 17: 1954 (1981).CrossRefGoogle Scholar
  6. 6.
    Ridley B K, Solid State Electron 21: 1313 (1978).ADSCrossRefGoogle Scholar
  7. 7.
    Wang De-ning and Shui Hai-long, 8th IEEE Int Conf Semi Lasers, Ottawa 64 (1982).Google Scholar
  8. 8.
    Horikoshi Y and Furukawa Y, Jpn J Appl Phys 18: 4 (1979).Google Scholar
  9. 9.
    Dunstan D J and Scherrer W, Rev Sci Inst., in press.Google Scholar
  10. 10.
    Dunstan D J and Spain I L, to be submitted to Rev Sci Inst.Google Scholar
  11. 11.
    Lambkin J, Gunney B J, Lancefield D, Bristow F G and Dunstan D J, to be published in J Phys E.Google Scholar
  12. 12.
    Henry C H, Logan R A, Merritt R F and Laongo J P, IEEE 19: 947 (1983).CrossRefGoogle Scholar
  13. 13.
    Mozer A, private communication.Google Scholar
  14. 14.
    Mozer A, Hauser S and Pilkuhn M H, IEEE JQE 21: 719 (1985).CrossRefGoogle Scholar
  15. 15.
    Hauser S, Zielinski E, Asada M, Schweizer H, Burkhard H and Kuphal E, ESSDERC (1987).Google Scholar
  16. 16.
    Childs G N, Brand S and Abram R A, Semicond Sci Technol 1:pp. 116–120 (1986).ADSCrossRefGoogle Scholar
  17. 17.
    Adams A R, Heasman K C and Hilton J, Semicond Sci Technol 2: 7 (1987).CrossRefGoogle Scholar
  18. 18.
    Beattie A R and Landsberg P T, Proc Royal Soc London 249: 16 (1959).ADSCrossRefGoogle Scholar
  19. 19.
    Haug A, Appl Phys Lett 42: 512 (1983).ADSCrossRefGoogle Scholar
  20. 20.
    Sugimura A, IEEE JQE 19: 930 (1983).CrossRefGoogle Scholar
  21. 21.
    Burt M G, Brand S, Smith C and Abram R A, J Phys C 17: 6385 (1984).ADSCrossRefGoogle Scholar
  22. 22.
    Sugimura A, IEEE JQE 17: 441 (1981).CrossRefGoogle Scholar
  23. 23.
    Bardyszewski W and Yevick D, IEEE JQE 21: 1131 (1985).CrossRefGoogle Scholar
  24. 24.
    Shantharama L G, Nicholas R J, Adams A R and Sarkar C K, J Phys C 18: L443 (1985).ADSCrossRefGoogle Scholar
  25. 25.
    Sarkar C K, Nicholas R J, Portal J C, Razeghi M, Chevrier J and Massies J, J Phys C 18: 2667 (1985).ADSCrossRefGoogle Scholar
  26. 26.
    Chen T R, Chang B, Chiu L C, Yu K L, Malgalits and Yariv A, Appl Phys Lett 43: 217 (1983).ADSCrossRefGoogle Scholar
  27. 27.
    Heasman K C, PhD thesis, University of Surrey, England, 1985.Google Scholar
  28. 28.
    Chen L H, Mattos J C V, Prince F L and Patel N B, Appl Phys Lett 44: 520 (1984).ADSCrossRefGoogle Scholar
  29. 29.
    Zhuang W, Zheng B, Xu J, Li Y, Xu J and Chen P, IEEE JQE 21: 712 (1985).CrossRefGoogle Scholar
  30. 30.
    Yamakoshi S, Wada O, Umeba I and Sakurai T, Jap Soc Appl Phys 3-H-12 (1982).Google Scholar
  31. 31.
    Nahory R E, Pollack M A and de Winter J C, Electron Lett 15: 695 (1979).CrossRefGoogle Scholar
  32. 32.
    Patel D, Adams A R, Greene P D and Henshall G D, Elect Lett 18: 12 (1982).CrossRefGoogle Scholar
  33. 33.
    Shantharama L G, Adams A R, Ahmad C N and Nicholas R J, J Phys C 17: 4429 (1984).ADSCrossRefGoogle Scholar
  34. 34.
    Wolford D J, Mariette H and Bradley J A, Inst Phys Ser GaAs and related compounds, 74: 2754 (1984).Google Scholar
  35. 35.
    Patel D, Adams A R, Greene P D and Henshall G D, Elect Lett 18: 527 (1982).CrossRefGoogle Scholar
  36. 36.
    Greene P D, Patel D, Adams A R, Allen E M and Henshall G D, Inst Phys Conf Ser GaAs and Rel Compounds 65: 265 (1982).Google Scholar
  37. 37.
    Ripper J E, J Appl Phys 43:pp. 1762 (1972).ADSCrossRefGoogle Scholar
  38. 38.
    Dixon R W and Joyce W B, J Appl Phys 59:pp. 4591 (1979).ADSCrossRefGoogle Scholar
  39. 39.
    Stubkjaar K, Asada M, Arai S and Suematsu Y, Jap J Appl Phys 20:pp. 1499 (1981).ADSCrossRefGoogle Scholar
  40. 40.
    Lambkin J and Dunstan D J, submitted to Solid State Commun.Google Scholar
  41. 41.
    Prins A D and Dunstan D J, submitted to Phil Mag Lett.Google Scholar
  42. 42.
    Osinski M and Adams M J, IEE Proc 129: 229 (1982).Google Scholar
  43. 43.
    Yamada M and Suematsu M, J Appl Phys 52: 2653 (1981).ADSCrossRefGoogle Scholar
  44. 44.
    Asada M and Suematsu Y, International Quantum Electronics Conference MII-3, Anaheim, CA, June 1984.Google Scholar
  45. 45.
    Hayes J R, Patel D, Adams A R and Greene P D, J Elect Mater 11: 1 (1982).CrossRefGoogle Scholar
  46. 46.
    Heasman K C, Adams A R and Willis P G, to be published.Google Scholar
  47. 47.
    Mozer A, Romanek K M, Schmid W, Pilkuhn M H and Schlosser E, Appl Phys Lett 41: 964 (1982).ADSCrossRefGoogle Scholar
  48. 48.
    Nanomura K, Suemune I, Yamanishi M and Mikoshiba N, Jap J Appl Phys 22: L556 (1983).ADSCrossRefGoogle Scholar
  49. 49.
    Armistead C J, Wheeler S A and Plumb R G, J Appl Phys 22: 1145 (1986).Google Scholar
  50. 50.
    Hayes S R, Hatton P and Adams A R, to be submitted to Electron Lett.Google Scholar
  51. 51.
    De Meis W M, Harvard Univ Tech Report HP-15 Chapter 3, p. 10 (1965).Google Scholar
  52. 52.
    Heasman K C. Adams A R, Armistead C J and Whiteaway J, submitted to IEEE Quantum Electronics.Google Scholar
  53. 53.
    Uji T, Iwarnoto K and Lang R, Appl Phys Lett 38: 193 (1981).ADSCrossRefGoogle Scholar
  54. 54.
    Temkin H, Chin A K, Di Guiseppe M A and Keramida V G, Appl Phys Lett 39: 405 (1981).ADSCrossRefGoogle Scholar
  55. 55.
    Olshansky R, Su C B, Manning J and Powazanik W, IEEE JQE 20: 838 (1984).CrossRefGoogle Scholar
  56. 56.
    Goodfellow R C, Carter A C, Rees G J and Davis R, IEEE Trans Electron Devices, ED 28: 365 (1981).ADSCrossRefGoogle Scholar
  57. 57.
    Dutta N K and Nelson R J, IEEE QE 18: 375 (1982).CrossRefGoogle Scholar
  58. 58.
    Dutta N K, Ndoun R J, Wright P D, Besomi P and Wilson R B, IEEE Trans Electron ED30 360 (1983).Google Scholar
  59. 59.
    Adams A R, Electronics Letters 22: 249 (1986).CrossRefGoogle Scholar
  60. 60.
    Yablonovitch E and Kane E O, IEEE J. Lightwave Technology, LT-4: 504 (1986).Google Scholar
  61. 61.
    Pikus G E and Bir G L, Sov Phys - Solid State 1: 1502 (1959).Google Scholar
  62. 62.
    Osbourn G C, Superlattices Microst 1: 223 (1985).ADSCrossRefGoogle Scholar
  63. 63.
    Schirber J R, Fritz J J and Dawson L R, Appl.Phys.Lett. 46: 187 (1985).ADSCrossRefGoogle Scholar
  64. 64.
    Luttinger J M and Kohn W, Phys. Rev. 97: 869 (1955).ADSMATHCrossRefGoogle Scholar
  65. 65.
    Madelung O, ed. “Numerical Data and Functional Relationships in Science and Technology”, Group III, Vol. 17, Springer-Verlag, Berlin (1982).Google Scholar
  66. 66.
    Blood P, Colak S and Kucharska A I, Appl Phys Lett 52: 599 (1988)ADSCrossRefGoogle Scholar
  67. 67.
    Fritz I J, Picraux S T, Dawson L R, Drummond T J, Laidig W G and Anderson N G, Appl.Phys. Lett. 46: 967, (1985).ADSCrossRefGoogle Scholar
  68. 68.
    Andersson T G, Chen Z G, Kulalovskii V D, Uddin A and Vallin T J, Appl. Phys. Lett. 51: 752, 1987ADSCrossRefGoogle Scholar
  69. 69.
    Grunthaner F et al., presented at Superlattices, Microstructures and Microdevices, Gothenburg 1986Google Scholar
  70. 70.
    O’Reilly E P, Heasman K C, Adams A R and Witchlow G P, Superlattices and Microstructures 3: 99 (1987).ADSCrossRefGoogle Scholar
  71. 71.
    Heasman K C, O’Reilly E P, Witchlow G P, Batty W and Adams A R, SPIE Vol. 800, “Novel Optoelectronic Devices”, p. 50 (1987).Google Scholar
  72. 72.
    Ghiti A, Batty W, Ekenberg U and O’Reilly E P, SPIE Vol. 861, to be publishedGoogle Scholar
  73. 73.
    Yablonovitch E and Kane E O, IEEE J. Lightwave Technology, to be published.Google Scholar
  74. 74.
    Altarelli M, Ekenberg U and Fasolino A, Phys. Rev. B 32: 5138 (1985).ADSCrossRefGoogle Scholar
  75. 75.
    Asada M, Kameyama A and Suematsu Y, IEEE J. Quantum Electronics QE-20: 745, (1984).Google Scholar
  76. 76.
    Eliseev P G and Drakin A E, Sov. J. Quantum Electronics 14: 119 (1984).ADSCrossRefGoogle Scholar
  77. 77.
    Camphausen D L, Connell G A N and Paul W, Phys Rev Lett 26: 184 (1971).ADSCrossRefGoogle Scholar
  78. 78.
    Sugimura A, IEEE J. Quantum Electronics QE-20: 336 (1984)Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • A. R. Adams
    • 1
  • K. C. Heasman
    • 1
  • E. P. O’Reilly
    • 1
  1. 1.Physics DepartmentUniversity of SurreySurreyUK

Personalised recommendations