Advertisement

Recombination Mechanisms in a Type II GaAs/AlGaAs Superlattice

  • T. W. Steiner
  • D. J. Wolford
  • S. W. Tozer
  • T. F. Kuech
  • M. Jaros
Part of the NATO ASI Series book series (NSSB, volume 189)

Abstract

A variety of experiments1, 2, 3 have shown that the GaAs/GaA1As band offset can be determined optically, with potentially meV resolution, provided type II recombination can be observed. Type II, or cross-interface recombination, can be induced in a GaAs/A1GaAs superlattice of arbitrary composition and periodicity by the application of hydrostatic pressure1. Figure 1 depicts schematically the band structure of such a superlattice at ambient pressure and at a non-zero pressure above the crossing point to type II behaviour. A typical above-crossing spectrum is displayed in Fig. 2. For pressures larger than the composition and periodicity dependent crossing point the X valley of the AlGaAs, rather than the Γ valley of the GaAs, is the lowest energy conduction-band minimum. The electrons will thus transfer to the AlGaAs while the holes remain in the GaAs. The oscillator strength of the optical recombination of these electrons and holes is very small since the k-space and real space overlaps of these electron and hole wavefunctions are both small. This qualitative arguement is in agreement with the results of a pseudopotential calculation4 which predicts a small oscillator strength for the optical type II recombination. Experiments investigating the time-decay and recombination mechanisms of these processes are described below.

Keywords

Auger Recombination Conduction Band Minimum Recombination Mechanism Excitation Density Pseudopotential Calculation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D.J. Wolford, T.F. Keuch, J.A. Bradley, M.A. Gell, D. Ninno, M. Jaros, J. Vac. Sci. Technol. 4, 1043 (1986)CrossRefGoogle Scholar
  2. 2.
    P. Dawson, B.A. Wilson, C.W. Tu and R.C. Miller, Appl. Phys. Lett. 48, 541 (1986)ADSCrossRefGoogle Scholar
  3. B.A. Wilson, P. Dawson C.W. Tu and R.C. Miller, J. Vac. Sci. Technol. 4, 1037 (1986)CrossRefGoogle Scholar
  4. 3.
    G. Danan, B. Etienne, F. Mollot, R. Planel, A.M. Jean-Louis, F. Alexander, B. Jusserand, G. Le Roux, J.Y. Marzin, H. Savary and B. Sermage, Phys. Rev. B35, 6207 (1987)ADSCrossRefGoogle Scholar
  5. 4.
    M.A. Gell, D. Ninno, M. Jaros, D.J. Wolford, T.F. Keuch and J.A. Bradley, Phys. Rev. B35, 1196 (1987)ADSCrossRefGoogle Scholar
  6. 5.
    A. Jayaraman, Rev. Mod. Phys. 55, 65 (1983)ADSCrossRefGoogle Scholar
  7. 6.
    T.W. Steiner, D.J. Wolford, S.W. Tozer and T.F. Keuch, submitted to Physical Review B; D.J. Wolford, T.F. Kuech, T.W. Steiner M. Jaros, M.A. Gell and D. Ninno, Superlattices and Microstructures (1988), in pressGoogle Scholar
  8. 7.
    T.W. Steiner, D.J. Wolford, T.F. Kuech and M. Jaros, Superlattices and Microstructures (1988), in pressGoogle Scholar
  9. 8.
    T. Steiner and M.L.W. Thewalt, Solid State Commun. 49, 1121 (1984)ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • T. W. Steiner
    • 1
  • D. J. Wolford
    • 1
  • S. W. Tozer
    • 1
  • T. F. Kuech
    • 1
  • M. Jaros
    • 2
  1. 1.IBM T.J. Watson Research CenterYorktown HeightsUSA
  2. 2.Dept. of Theoretical PhysicsThe UniversityNewcastle upon TyneUK

Personalised recommendations