Advertisement

Electron Beam Source Molecular Beam Epitaxy of AlxGal−xAs Graded Band Gap Device Structures

  • R. J. Malik
  • A. F. J. Levi
  • B. F. Levine
  • R. C. Miller
  • D. V. Lang
  • L. C. Hopkins
  • R. W. Ryan
Part of the NATO ASI Series book series (NSSB, volume 189)

Abstract

A new method has been developed for the growth of graded band-gap AlxGal−xAs alloys by molecular beam epitaxy which is based upon electron. beam evaporation of the Group III elements. The metal evaporation rates are measured real-time and feedback controlled using beam flux sensors. The system is computer controlled which allows precise programming of the Ga and Al evaporation rates. The large dynamic response of the metal sources enables for the first time the synthesis of variable band-gap Al Gal−xAs with arbitrary composition profiles. This new technique has been demonstrated in the growth of unipolar hot electron transistors, graded base bipolar transistors, and Mshaped barrier superlattices.

Keywords

Molecular Beam Epitaxy Heterojunction Bipolar Transistor Feedback Control Loop Flux Sensor Molecular Beam Epitaxy System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    F. Capasso, Ann. Rev. Mater. Sci., 16, 263–91 (1986).Google Scholar
  2. [2]
    J. P. Harbison, L. D. Peterson, J. Leskoff, Proc. Fourth Int. Conf. MBE, U. of York, September 1986 (to be pub. J. Cryst. Growth).Google Scholar
  3. [3]
    N. J. Sauer, T. Y. Chang, A. H. Dayem, E. H. Westerwick, J. Vac. Sci. Tech. B, 5, 718 (1987).CrossRefGoogle Scholar
  4. [4]
    K. Alavi, A. Y. Cho, F. Capasso, and J. Allam, J. Vac. Sci. Tech. B, 5, 802 (1987).Google Scholar
  5. [5]
    J. C. Bean, Proc. Fourth Int. Conf. MBE, U. of York, September 1986 (to be pub. J. Cryst. Growth).Google Scholar
  6. [6]
    M. B. Panish, H. Temkin, and S. Sumski, J. Vac. Sci. Tech. B, 3, 657 (1985).Google Scholar
  7. [7]
    S. Shimizu, O. Tsukakoshi, S. Komiya, and Y. Makita, Jap. J. Appl. Phys., 24, 1130–40 (1986).ADSCrossRefGoogle Scholar
  8. [8]
    R. J. Malik, J. Vac. Sci. Tech. B, 5, 722 (1987).Google Scholar
  9. [9]
    Inficon Leybold-Ileraeus Co., Syracuse, NY 13057.Google Scholar
  10. [10]
    J. 11. Weave, B. A. Joyce, P. J. Dobson, and N. Norton, Appl. Phys. A, 31, 1 (1983).Google Scholar
  11. [11]
    R. J. Malik and A. F. J. Levi, Appl. Phys. Lett., 52 (1988).Google Scholar
  12. [12]
    J. R. Hayes and A. F. J. Levi, IEEE J. Quantum Electron., QE-22, 1744 (1986).Google Scholar
  13. [13]
    M. Heiblum, M. I. Nathan, D. C. Thomas, and C. M. Knoedler, Phys. Rev. Lett., 55, 2200 (1985).ADSCrossRefGoogle Scholar
  14. [14]
    M. Kawabe, M. Kondo, N. Matsuura, and K. Yamamoto, Jpn. J. Appl. Phys., 22, L64 (1983).ADSCrossRefGoogle Scholar
  15. [15]
    B. F. Levine, C. G. Bethea, W. T. Tsang, F. Capasso, K. K. Thornber, R. C. Fulton, and D. A. Kleinman, Appl. Phys. Lett., 42, 769 (1983).ADSCrossRefGoogle Scholar
  16. [16]
    R. J. Malik, F. Capasso, R. A. Stall, R. A. Kiehl, R. W. Ryan, R. Wunder, and C. G. Bethea, Appl. Phys. Lett., 46, 600 (1985).ADSCrossRefGoogle Scholar
  17. [17]
    B. F. Levine, K. K. Choi, C. G. Bethea, J. Walker, and R. J. Malik, Appl. Phys. Lett., 50, 1092 (1987).ADSCrossRefGoogle Scholar
  18. [18]
    K. K. Choi, B. F. Levine, C. G. Bethea, J. Walker, and R. J. Malik, Appl. Phys. Lett., 50, 1814 (1987).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • R. J. Malik
    • 1
  • A. F. J. Levi
    • 1
  • B. F. Levine
    • 1
  • R. C. Miller
    • 1
  • D. V. Lang
    • 1
  • L. C. Hopkins
    • 1
  • R. W. Ryan
    • 1
  1. 1.AT&T Bell LaboratoriesMurray HillUSA

Personalised recommendations