H-2 Antigens pp 725-733 | Cite as

The Role of Immune Response Gene and I -A Molecule in Murine Myasthenia Gravis Pathogenesis

  • Premkumar Christadoss
Part of the NATO ASI Series book series (NSSA, volume 144)


Myasthenia gravis (MG1) is an autoimmune neuromuscular disease characterized by muscle weakness. Antibody mediated destruction of muscle membrane acetylcholine receptors (AChR) is the primary pathology in MG. Because of the association of HLA-DR3 gene in MG, we studied the role of class II genes and their product in the murine model of MG, experimental autoimmune MG (EAMG), which mimics human MG in all respects. Initial studies on B10 congenic and recombinants suggested the involvement of IA subregion gene on EAMG pathogenesis. Later, evaluation of IA beta chain mutant bm12 revealed that IA molecule is one of the determinants which mediates EAMG. Recent studies pointed out that L3T4+ helper T cells, which participate in T cell response to class II antigens is required for EAMG pathogenesis. Therefore, specific therapy of MG is possible by modulating the functions of DQ/CD4 determinants, which are analogous to IA/L3T4 determinants in the mouse.


Major Histocompatibility Complex Acetylcholine Receptor Major Histocompatibility Complex Gene Major Histocompatibility Complex Antigen Lymphocyte Proliferative Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bell, J., Rassenti, L., Smoot, S., Smith, K., Newby, C., Hohlfeld, R., Toyka, K., McDevitt, H., and Steinman, L.: HLA-DQ Beta-chain polymorphism linked by myasthenia gravis. Lancet. May 10: 1058 1060, 1986.Google Scholar
  2. Berman, P.W. and Patrick, J.: Linkage between the frequency of muscle weakness and loci that regulate immune responsiveness in mutine experimental myasthenia gravis. J. Exp. Med. 152:507–520, 1980.Google Scholar
  3. CHristadoss, P., Lennon, V.A., Lambert, E.H., and David, C.S.: Genetic control of experimental autoimmune myasthenia gravis in mice. In T and E Lymphocytes: Recognition and Function. F.H. Bach, B. Bona-vida, E.S. Vitetta, and C.F. Fox, Eds.:249–256. Academic Press, New York, NY, 1979.Google Scholar
  4. Christadoss, P., Lennon, V.A., Krco, C.J., Lambert, E.H., and David, C.S.: Genetic control of autoimmunity to acetylcholine receptors - Role of la molecules. Ann. NY Acad. Sci. 377:258–276, 1981a.Google Scholar
  5. Christadoss, P., Lindstrom, J.M., Melvold, R.W., and Talal, N.: Mutation at I-A beta chain prevents experimental autoimmune myasthenia gravis. Immunogenetics 21: 33–38, 1985a.Google Scholar
  6. Christadoss, P., Lennon, V.A., and David, C.S.: Genetic control of experimental autoimmune myasthenia gravis in mice. I. Lymphocyte proliferative response to acetylcholine receptor is under H-2 linked Ir gene control. J. Immunol. 123:2540–2543, 1979.Google Scholar
  7. Christadoss, P., Lennon, V.A., Krco, C.J., and David, C.S.: Genetic control of experimental autoimmune myasthenia gravis in mice. III. la molecules mediate cellular immune responsiveness to acetylcholine receptors. J. Immunol. 128:1141–1144, 1982.Google Scholar
  8. Christadoss, P., Krco, C.J., Lennon, V.A., and David, C.S.: Genetic control of experimental autoimmune myasthenia gravis in mice. II. Lymphocyte proliferative response to acetylcholine receptor is dependent on Lyt-1 23 cells. J. Immunol. 126:1646–1647, 1981b.Google Scholar
  9. Christadoss, P., Lindstrom, J., and Talal, N.: Cellular immune response to acetylcholine receptors in mutine experimental autoimmune myasthenia gravis: Inhibition with monoclonal anti-I-A antibodies. Cell Immunol. 81: 1–8, 1983a.PubMedCrossRefGoogle Scholar
  10. Christadoss, P. and Dauphinee, M.J.: Immunotherapy for myasthenia gravis: A murine model. J. Immunol. 136:2437–2440, 1986.PubMedGoogle Scholar
  11. Drachman, D.: The biology of myasthenia gravis. Ann. Rev. Neurosci. 4: 195–225, 1981.PubMedCrossRefGoogle Scholar
  12. Dialynas, D.P., Quan, Z.S., Wall, K.A., Pierres, A., Quintans, J.CrossRefGoogle Scholar
  13. Loken, M.R., Pierres, M., and Fitch, F.W.: Characterization of mutine T cells surface molecule designated L3T4 to human Leu3/T4 molecule. J. Immunol. 131:2445–2451, 1983.Google Scholar
  14. Dialynas, D.P., Wilde, D.B., Marrack, P., Pierres, A., Wall, K.A., Havram, W., Otten, G., Loken, M.R., Pierres, M., Kappler, J., and Fitch, F.W.: Characterization of the murine antigenic determinant L3T4a, recognized by monoclonal antibody GK1.5 expression of L3T4a by functional T cell clones appears to correlate primarily with class II MHC antigen reactivity. Immunol. Rev. 74:29–56, 1983.Google Scholar
  15. Fuchs, S., Neiro, D., Tarrab-Hazdai, and Yarr, G.: Strain differences in the autoimmune response of mice to acetylcholine receptors. Nature 263: 329–330, 1976.PubMedCrossRefGoogle Scholar
  16. Hohlfeld, R., Toyka, K.V., Heininger, K., Grosse-Wilde, H., and Kalies, I.: Autoimmune human T-lymphocytes specific for acetylcholine receptor. Nature 310: 244–246, 1984.Google Scholar
  17. Lennon, V.A.: Immunologic mechanisms in myasthenia gravis - a model of a receptor disease. In Clinical Immunology Update - Reviews forGoogle Scholar
  18. Physicians. E.C. Franklin, Ed. Elsevier, New York, NY, 1979.Google Scholar
  19. Lindstrom, J.: Autoimmune response to acetylcholine receptors in maysthenia gravis and its animal model. Adv. Immunol. 27:1–50, 1979.Google Scholar
  20. McDevitt, H.O. and Bodmer, W.F.: Histocompatibility antigen, immune responsiveness, and susceptibility to disease. Am, J. Med. 52, 1–8, 1972.Google Scholar
  21. Safwenberg, J., Hammarstrom, L., Lindblom, J.B., Matell, G., Moller, E., Osterman, P.O., and Smith, S.I.E.: HLA-A, -B, -C, and -D antigens in male patients with myasthenia gravis. Tissue Antigens 12: 136142, 1978.Google Scholar
  22. Smith, C.I.E., Grubb, R., and Hammarstrom, L.: GM allotypes in Swedish myasthenia gravis patients. J. Immunogenetics 10:1–9.Google Scholar
  23. Waldor, M.K., Hardy, R.R., Hayakawa, K., Steinman, L., Herzenberg, L.A., and Herzenberg, L.A.: Proc. Natl. Acad. Sci. 81:2855–2858, 1984.Google Scholar
  24. Waldor, M.K., Sriram, S., McDevitt, H.D., and Steinman, L.: In vivo therapy with monoclonal anti-Ia antibody suppress immune response to acetylcholine receptors. Proc. Natl. Acad. Sci. 80:2713–2717, 1983.Google Scholar
  25. Waldor, M.K., Sriram, S., Hardy, R., Herzenberg, L.A., Lanier, L., Linn, M., and Steinman, L.: Reversal of experimental allergic encephalomyelitis with monoclonal antibody to a T-cell subset marker. Science 227: 415–417, 1985.Google Scholar
  26. Wilde, D.B., Marrack, P., Kappler, J., Dialynas, D.P., and Fitch, F.W.: Evidence implicating L3T4 in class II MHC antigen reactivity: Monoclonal antibody GK1.5 (anti-L3T4a) blocks class II MHC antigen-specific proliferation, release of lymphokines and binding by cloned murine helper T lymphocyte lines. J. Immunol. 131: 2178–2183, 1983.Google Scholar
  27. Wofsy, D. and Seaman, W.E.: Successful treatment of autoimmunity in NZB/NZW F1 mice with monoclonal antibody to L3T4. J. Exp. Med. 161:378–391, 1985.Google Scholar
  28. Yoshida, I., Isuchtya, M., Ono, A., Yoshimatus, H., Satoyoski, E., and Tsuji, K.: HLA antigens and myasthenia gravis in Japan. J. Neurol. Sci. 32:195–201, 1977.Google Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • Premkumar Christadoss
    • 1
  1. 1.Department of PathologyUniversity of Vermont College of MedicineBurlingtonUSA

Personalised recommendations