X-Ray Topography and Related Techniques Using Synchrotron Radiation

  • Michèle Sauvage-Simkin
Part of the NATO ASI Series book series (NSSB)


X-Ray Topography (XRT) is a non destructive imaging technique based on the difference in reflecting power between perfect and imperfect crys tal regions. When coupled with proper detectors, it provides a two dimensional map of the defect content in a single crystal. However, X-rays are almost exclusively sensitive to the strain field associated with a particular imperfection and hence, only those defects producing strains larger than the minimum detectable limit (now 10−8) over areas broader than the spatial resolution (about lum) may ever be detected by this method. Moreover, these figures are utmost performances which cannot be achieved on standard set ups as will be developed in the following. When compared to Transmission Electron Microscopy (TEM)1, XRT is then able to reveal non destructively the same type of defects: dislocations, stac king faults, planar boundaries, precipitates or impurity induced strains with a much better sensitivity but a poorer spatial. resolution. XRT is thus restricted to study single crystals with a low density of imper fections. Contrary to TEM, it will be mostly suitable to investigate the initial stages of processes like microplasticity, phase transformations, since the field of view is broad enough (about a few cm2) to image the whole sample submitted to an applied stress or a thermal treatment, specially with the new synchrotron radiation (SR) topography cameras. The advent of this new powerful X-ray source has significantely enlarged the field of application of XRT which suffered in the past from the long exposures preventing real time experiments on evolving systems. A factor of about 100 in the intensity delivered by the SR sources compared to laboratory generators, together with the advances in X-ray video detec tors enable now to follow the transformations taking place in single crystals under controlled external stimulations. Examples dealing with growth processes from the melt or in the solid state, phase transformations, plastic deformation will be described in the following.


Synchrotron Radiation Surface Acoustic Wave Bragg Reflection Ultra High Vacuum Bloch Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L.W. Hobbs, this volumeGoogle Scholar
  2. 2.
    J. Baruchel, S.B. Palmer and M. Schlenker, J. Physique 42: 1279 (1981)Google Scholar
  3. 3.
    “Applications of X-ray Topographic Methods to Materials Science”. Ed. S. Weissmann, F. Balibar and J.F. Petroff - Plenum N.Y. (1984)Google Scholar
  4. “Characterization of Crystal Growth Defects by X-Ray Methods” Ed. B.K. Tanner and D.K. Bowen - Plenum N.Y. (1980)Google Scholar
  5. “Synchrotron Radiation Research”. Ed. H. Winick and S. Doniach - Plenum N.Y. (1980)Google Scholar
  6. 6.
    M. Von Laue “Roëntgenstrahlinterferenzen” 3rd ed, Akademische Verlags Gesellschaft - Frankfurt (1961)Google Scholar
  7. 7.
    H. Hashizume, J. Appl. Cryst. 16: 420 (1983)CrossRefGoogle Scholar
  8. 8.
    N. Kato, Acta Cryst 13: 349 (1960)CrossRefGoogle Scholar
  9. 9.
    A.R. Lang, Acta Cryst 12: 249 (1959)CrossRefGoogle Scholar
  10. 10.
    J.B. Newkirk, Trans. AIME, 215: 483 (1959)Google Scholar
  11. 11.
    A. Authier, J. Physique 27: 57 (1966)CrossRefGoogle Scholar
  12. 12.
    S. Takagi, Acta Cryst 15 311 (1962)Google Scholar
  13. 13.
    S. Takagi, J. Phys. Soc. Jap. 26: 1239 (1969)ADSCrossRefGoogle Scholar
  14. 14.
    D. Taupin, Bull. Soc. Fr. Miner. Crist,, 87: 469 (1964)Google Scholar
  15. 15.
    D.K. Bowen, G.F. Clark, S.T. Davies, J.R.S. Nicholson, K.J,Roberts, J.N. Scherwood and B.K. Tanner, Nucl. Instr. Methods 208: 277 (1983)Google Scholar
  16. 16.
    S. Suzuki, M. Ando, K. Hayakawa, 0. Nittono, H. Hashizume, S. Kishino and K. Kohara, Nucl. Instr. Methods227: 584 (1984)Google Scholar
  17. 17.
    J. Chikawa, F. Sato, T. Kawamura, T. Kuriyama, T. Yamashita and N. Coto, in “X-ray Instrumentation for the Photon Factory”. - Eds S. Hosoya, Y. Iitaka and H. Hashizume - KTK/Reidel Pub. Co. Tokyo (1984)Google Scholar
  18. 18.
    B.K. Tanner, G.F. Clark, P.A. Goddard, D.K. Bowen, S.T. Davies and 0.P. Aleshko-0zhevsky, Nucl. Instr. Methods 208: 713 (1983Google Scholar
  19. 19.
    J.W.M. Du Mond, Phys. Rev. 52: 871 (1937)Google Scholar
  20. 20.
    J.F. Petroff, M. Sauvage, P. Riglet and H. Hashizume, Phil Mag. A 42: 319 (1980)Google Scholar
  21. 21.
    D.E. Sayers, S.M. Heald, M.A. Pick, J.I. Budnick, E.A. Stern and J. Wong, Nucl. Instr. Methods 208: 631 (1983)CrossRefGoogle Scholar
  22. 22.
    J. Gastaldi, C. Jourdan, R. Marzo, C. Allasia and J.N. Jullien J. Appl. Cryst. 15: 391 (1982)Google Scholar
  23. 23.
    J. Gastaldi and C. Jourdan, Phil. Mag. A, 50: 319 (1984)Google Scholar
  24. 24.
    C. Jourdan and J. Gastaldi, Proceedings of the Conference on “Grain Boundary Structure and Related Phenomena”. Minakami Spa, Japan, Nov. (1985)Google Scholar
  25. 25.
    o. Nittono, T. Ogawa, S.K. Gong and S. Nagakura, Jpn J. Appl. Phys 23: L 723 (1984)Google Scholar
  26. 26.
    A. Zarka, J. Appl. Cryst., 16: 354 (1983)CrossRefGoogle Scholar
  27. 27.
    G. Dolino and J.P. Bachheimer, Solid State Short Commun., 45: 259 (1983)CrossRefGoogle Scholar
  28. 28.
    K. Gouhara, Y.H. Li and N. Kato, J. Phys. Soc. Jpn 52: 3697 (1983)Google Scholar
  29. 29.
    K. Gouhara and N. Kato, J. Phys. Soc. Jpn 53: 2177 (1984)ADSCrossRefGoogle Scholar
  30. 30.
    A. Zarka and B. Capelle, extended abstracts of the IXth European Crystallographic Conference, Torino (Italy) Sept. 1985Google Scholar
  31. 31.
    M. Ribet, S. Gits-Leon, F. Lefaucheux and M.C. Robert, Ferroelectrics in pressGoogle Scholar
  32. 32.
    V. Janovec, Physics Letters 99A: 384 (1983)ADSCrossRefGoogle Scholar
  33. 33.
    C. Jourdan and J Gastaldi, J. Appl. Cryst. 16 646 (1983)Google Scholar
  34. 34.
    C. Jourdan and J. Gastaldi, private communicationGoogle Scholar
  35. 35.
    G.R. Fisher and P. Barnes, J. Appl. Cryst. 17: 231 (1984)Google Scholar
  36. 36.
    M. Dudley, J. Miltat and D.K. Bowen, Phil. Mag. A 50: 487 (1984)Google Scholar
  37. 37.
    J. Miltat and D.K. Bowen, J. Physique 40: 389 (1979)CrossRefGoogle Scholar
  38. 38.
    G. Michot and A. George, Scripta Metallurgica 16: 519 (1982)CrossRefGoogle Scholar
  39. 39.
    A. Jacques, E. Manière, J.P. Michel and A. George, in “Dislocations in Solids” ed. H. Suzuki, T. Ninomiya, K. Sumino and S. Takeuchi 9 University of Tokyo Press (1985), p. 655Google Scholar
  40. 40.
    M.C. Robert and F. Lefaucheux, J. Cryst. Growth, 65: 637 (1983)ADSCrossRefGoogle Scholar
  41. 41.
    A. Zarka, Liu Lin and M. Sauvage, J. Cryst. Growth 62: 409 (1983)Google Scholar
  42. 42.
    J. Miltat, IEEE Trans. Mag. Mag. 20: 1114 (1984)Google Scholar
  43. 43.
    J. Burgeat and D. Taupin, Acta Cryst A24: 99 (1968)Google Scholar
  44. 44.
    M. Sauvage-Simkin and J.F. Petroff, in ref. 3, 42. 1Google Scholar
  45. 45.
    S. Ben Soussan, D.E.A. unpublished report Paris 1934Google Scholar
  46. 46.
    M.J. Hill, B.K. Tanner, M.A.G. Halliwell and M.H. Lyons, J Appl.Cryst. in pressGoogle Scholar
  47. 47.
    M. Sauvage, P. Voisin, C. Delalande, P. Etienne and P. Delescluse, Proceedings of the Conference on Modulated Structures - Tokyo, Sept. 1985 - to be published in Surface Science Google Scholar
  48. 48.
    B.C. Larson, C.W. White, T.S. Noggle and D.M. Mills, Phys. Rev. Letters 48: 337 (1982)Google Scholar
  49. 49.
    C.C. Gluer, W. Graeff and H. Möller, Nucl. Instr. Methods 208: 701 (1983)Google Scholar
  50. 50.
    R.W. Whatmore, P.A. Goddard, B.K. Tanner and G.F. Clark, Nature, 299: 44 (1982)ADSCrossRefGoogle Scholar
  51. 51.
    H. Cerva and W. Graeff, Phys. Stat. Sol. a82: 35 (1984)Google Scholar
  52. 52.
    H. Cerva and W. Graeff, Phys. Stat. Sol. a87: 507 (1985)Google Scholar
  53. 53.
    S.K. Andersen, J.A. Golovchenko and G. Nair, Phys. Rev. Letters 37: 1141 (1976)Google Scholar
  54. 54.
    J.A. Golovchenko, J.R. Patel, D.R. Kaplan, P.L. Cowan and M.J. Bedzyk: Phys. Rev. Letters 49: 560 (1982)Google Scholar
  55. 55.
    G. Materlik, A. Frahm and M.J. Bedzyk, Phys. Rev. Letters, 52: 441 (1984)Google Scholar
  56. 56.
    N. Hertel, G. Materlik and J. Zegenhagen, Z. Phys, B 58: (1985)Google Scholar
  57. 57.
    W.C. Marra, P. Eisenberger and A.Y. Cho, J. Appl. Phys., 50: 6927 (1979)ADSCrossRefGoogle Scholar
  58. 58.
    J. Bohr, R. Feidenhansl, M. Nielsen, M. Toney, R.L. Johnson, I.K. Robinson, Phys R.ev. Letters 54 1275 (1985)Google Scholar
  59. 59.
    S. Brennan and P. Eisenberger, Nucl. Instr. Methods, 222: 164 (1984)Google Scholar
  60. 60.
    P. Fuoss and I.K. Robinson, Nucl. Instr. Methods 222: 171 (1984)Google Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • Michèle Sauvage-Simkin
    • 1
    • 2
  1. 1.Laboratoire de Minéralogie-Cristallographieassocié au CNRA et aux Universités Paris VI et Paris VIIParis Cedex 05France
  2. 2.CNRS et Université Paris-SudOrsayFrance

Personalised recommendations