Application of the Positron Annihilation Technique in Studies of Defects in Solids

  • Morten Eldrup
Part of the NATO ASI Series book series (NSSB)


The basic principles of positron annihilation physics are discussed and the four most important experimental techniques are described (i.e. the positron lifetime, the angular correlation, the Doppler broadening, and the low-energy-positron beam techniques). Several examples are discussed, in particular for metals and molecular crystals, which illustrate the sensitivity of the positron annihilation techniques to vacancy type defects. For example it is shown how information can be obtained about vacancy formation energies, vacancy migration and clustering, vacancy-impurity interactions, densities of rare gasses in bubbles in metals, and defect density profiles in near-surface regions.


Angular Correlation Positron Annihilation Vacancy Formation Positron Lifetime Vacancy Cluster 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. D. Andersen, The Apparent Existence of Easily Deflectable Positives, Science 76: 238 (1932), and The Positive Electron, Phys. Rev. 43: 491 (1933).Google Scholar
  2. 2.
    P. A. M. Dirac, On the Annihilation of Electrons and Protons, Proc. Camb, Phil. Soc. 26:361 (1929–30), and A Theory of Electrons and Protons, Proc. Roy. Soc. Al26: 360 (1930).Google Scholar
  3. 3.
    P. M. S. Blackett and G. P. S. Occhialini, Some Photographs of the Tracks of Penetrating Radiation, Proc. Roy. Soc. A139: 699 (1933).CrossRefGoogle Scholar
  4. 4.
    N. R. Hanson, “The Concept of the Positron”, Cambridge University Press, Cambridge (1963).zbMATHGoogle Scholar
  5. 5.
    R. R. Hasiguti and K. Fujiwara, Eds., “Positron Annihilation” (Proc. 5’th Int. Conf. on Positron Annihilation), Japan Institute of Metals, Sendai, Japan (1979).Google Scholar
  6. 6.
    P. G. Coleman, S. C. Sharma, and L. M. Diana, Eds., “Positron Annihilation” (Proc. 6’th Int. Conf. on Positron Annihilation), North-Holland, Amsterdam (1982).Google Scholar
  7. 7.
    P. C. Jain, R. M. Singru, K. P. Gopinathan, Eds., “Positron Annihilation” (Proc. 7’th Int. Conf. on Positron Annihilation), World Scientific, Singapore (1985).Google Scholar
  8. 8.
    P. Hautojärvi, Ed. “Positrons in Solids” (Tropics in Current Physics), Springer, Berlin (1979).Google Scholar
  9. 9.
    W. Brandt and A. Dupasquier, Eds., “Positron Solid-State Physics”, (Proc. Int. School of Physics, “Enrico Fermi”, 1981 ), North-Holland, Amsterdam (1983).Google Scholar
  10. 10.
    S. Berko and H. N. Pendleton, Positronium, Ann. Rev. Nucl. Part. Sci. 30: 543 (1980).ADSCrossRefGoogle Scholar
  11. 11.
    A. Rich, Recent experimental advances in positronium research, Rev. Mod. Phys. 53: 127 (1981).ADSCrossRefGoogle Scholar
  12. 12.
    T. C. Griffith and G. R. Heyland, Experimental aspects of the study of the interaction of low-energy positrons with gases, Phys. Rep. 39C: 169 (1978).CrossRefGoogle Scholar
  13. 13.
    M. Charlton, Experimental studies of positrons scattering in gases, Rep. Prog. Phys. 48: 737 (1985).ADSCrossRefGoogle Scholar
  14. 14.
    H. J. Ache, Ed. “Positronium and Muonium Chemistry”, Adv. Chem. Ser. 175, Am. Chem. Soc., Washington D.C. (1979)Google Scholar
  15. 15.
    B. Lévay, Chemical structure studies with positrons and mesons, At. Energy Rev. 17: 413 (1979).Google Scholar
  16. 16.
    E. Mogensen, Positronium formation in condensed matter and high-density gases, in: “Positron Annihilation”, Ref. 6, p. 763 (1982).Google Scholar
  17. 17.
    F. M. Jacobsen, Positronium formation in gases and liquids, in: “Positron Scattering in Gases”, J. W. Humbertson and M. R. C. McDowell, Eds., Plenum, New York (1984), p. 85.CrossRefGoogle Scholar
  18. 18.
    S. Berko, Fermi surface studies in disordered alloys: Positron annihilation experiments, in: “Electrons in Disordered Metals and at Metallic Surfaces”, P. Phariseau, B. L. Gyorffy, and L. Scheire, Eds., Plenum, New York (1979) p. 239.CrossRefGoogle Scholar
  19. 19.
    R. W. Siegel, Positron annihilation spectroscopy,Ann. Rev. Mat. Sci, 10: 393 (1980).ADSCrossRefGoogle Scholar
  20. 20.
    R. N. West, Positrons as solid state probes, in; “Nuclear Physics Methods in Materials Research”, K. Bethge, H. Baumann, H. Jex, and F. Rauch, Eds., Vieweg, Braunschweig (1980) p. 234.Google Scholar
  21. 21.
    P. Hautojärvi, Positron annihilation studies of vacancy-type defects, Hyperfine Int. 15 /16: 357 (1983).ADSCrossRefGoogle Scholar
  22. 22.
    A. P. Mills, Jr., Studying surfaces of solids using slow positron beams, Comments Solid State Phys. 10: 173 (1982).Google Scholar
  23. 23.
    A. P. Mills, Jr., Experimentation with low-energy-positron beams, in: “Positron Solid-State Physics”, Ref. 9, p. 432 (1983).Google Scholar
  24. 24.
    K. G. Lynn, Slow positrons in the study of surface and near-surface defects, in: “Positron Solid-State Physics”, Ref. 9, p. 609 (1983).Google Scholar
  25. 25.
    S. E. Derenzo, T. F. Budinger, R. H. Huesman, and J. L. Cahoon, Dynamic positron emission tomography in man using small bismuth germanate crystals, in: “Positron Annihilation”, Ref. 6, p. 935 (1982).Google Scholar
  26. 26.
    A. I. Akhiezer and V. B. Berestetskii, “Quantum Electrodynamics”, Inter science Publishers, New York (1965).Google Scholar
  27. 27.
    R. N. West, Positron studies of condensed matter, Adv. Phys. 22: 263 (1974).Google Scholar
  28. 28.
    V. I. Goldanskii, Physical chemistry of the positron and positronium, At. Energy Rev. 6: 1 (1968).Google Scholar
  29. 29.
    S. Berko, Momentum density and Fermi-surface measurements in metals by positron annihilation, in: “Positron Solid-State Physics”, Ref. 9, P. 64.Google Scholar
  30. 30.
    P. E. Mijnarends, Electron momentum densities in metals and alloys, in: “Positrons in Solids”, Ref. 8, p. 25 (1979) and Momentum density in metals and alloys: Theory, in: “Positron Solid-State Physics”, Ref. 9, p. 146 (1983).Google Scholar
  31. 31.
    I.K. Mackenzie, Experimental methods of annihilation time and energy spectrometry, in: “Positron Solid-State Physics”, Ref. 9, p. 196 (1983).Google Scholar
  32. 32.
    R. P. Gupta, R. W. Siegel, Positron trapping and annihilation at vacancies in bcc refractory metals, J. Phys. F. 10: L7 (1980).ADSCrossRefGoogle Scholar
  33. 33.
    R. M. Nieminen and M. J. Manninen, Positrons in imperfect solids: Theory, in: “Positrons in Solids”, Ref. 8, p. 145 (1979).CrossRefGoogle Scholar
  34. 34.
    P. Hautojärvi, J. Heiniö, M. Manninen, and R. Nieminen, The effect of microvoid size on positron annihilation characteristics and residual resistivity in metals, Phil. Mag. 35: 973 (1977).CrossRefGoogle Scholar
  35. 35.
    M. J. Puska and R. M. Nieminen, Carbon-vacancy interaction in a iron: interpetation of positron annihilation results, J. Phys. F. 12:L211 (1982), and, Defect spectroscopy with positrons: a general calcu ational method,J. Phys. F. 13: 333 (1983).Google Scholar
  36. 36.
    C. Corbel, M. Puska, and R. M. Nieminen, Computed positron lifetimes in vacancies and vacancy-iron clusters in gold, Rad. Effects 79: 305 (1983).CrossRefGoogle Scholar
  37. 37.
    H. E. Hansen, R. M. Nieminen, and M. J. Puska, Computational analysis of positron experiments, J. Phys. F. 14: 1299 (1984).ADSCrossRefGoogle Scholar
  38. 38.
    A. Dupasquier, Positronium like systems in solids, in: “Positron Solid-State Physics”, Ref. 9, p. 510 (1983).Google Scholar
  39. 39.
    O.E. Mogensen, The spur reaction model of positronium formation, J. Chem. Phys. 60:998 (1974), and, Effect of an external electric field on the positronium formation in the positron spur, Appl. Phys. 6: 315 (1975).Google Scholar
  40. 40.
    M. Eldrup, A. Vehanen, P. J. Schultz, and K. G. Lynn, Positronium formation and diffusion in a molecular solid studied with variable energy positrons, Phys. Rev. Lett. 51:2007 (1983); ibid 53:954 (1984); and, Positronium formation and diffusion in crystalline and amorphous ice using a variable-energy positron beam, Phys. Rev. B, 32: 7048 (1985).ADSGoogle Scholar
  41. 41.
    E. Mogensen, Comment on: Positronium formation and……, submitted to Phys. Rev. B.Google Scholar
  42. 42.
    S. Berko, Two-dimensional angular correlation of annihilation radiation experiments, in: “Positron Annihilation”, Ref. 5, p. 65 (1979).Google Scholar
  43. 43.
    L. C. Smedskjaer. and M. J. Fluss, Experimental methods of positron annihilation for the study of defects in metals, in: “Methods of Experimental Physics”, Vol. 21:77–145 (1983), J. N. Mundy, S. J. Roth-mann, M. J. Fluss, and L. C. Smedskjaer, Eds., Academic Press, New York (1983)Google Scholar
  44. 44.
    F. M. Jacobsen, A positron lifetime study of properties of light particles in liquids, Rise Report 433 (1981).Google Scholar
  45. 45.
    P. Kirkegaard, M. Eldrup, O. E. Mogensen, and N. J. Pedersen, Program system for analysing positron lifetime spectra and angular correlation curves, Comput. Phys. Commun. 23:307 (1981)Google Scholar
  46. 46.
    A. A. Manuel, L. Oberli, T. Jarlborg, R. Sachot, P. Descants, and M. Peter, Progress in 2-D angular correlation of positron annihilation using high-density proportional chambers, in: “Positron Annihilation”, Ref. 6, p. 281 (1982).Google Scholar
  47. 47.
    M. Eldrup, O. E. Mogensen, and J. H. Evans, A positron annihilation study of the annealing of electron irradiated molybdenum, J. Phys. F. 6: 499 (1976).ADSCrossRefGoogle Scholar
  48. 48.
    M. J. Fluss, S. Berko, B. Chakraborty, K. R. Hoffmann, P. Lippel, and R. W. Siegel, Positron annihilation spectroscopy of the equilibrium vacancy ensemble in aluminium, J. Phys. F. 14: 2831 (1984).ADSCrossRefGoogle Scholar
  49. 49.
    S. Manti and W. Triftshäuser, Defect annealing studies on metals by positron annihilation and electrical resistivity measurements,Phys. Rev. B. 17: 1645 (1978).CrossRefGoogle Scholar
  50. 50.
    J. Mäkinen, A. Vehanen, P. Hautojärvi, H. Huomo, and J. Lahtinen, Measurements of vacancy-type defect distribution in argon-sputtered Al (110) studied with variable-energy positrons, Submitted to Surf. Science for publication.Google Scholar
  51. 51.
    R. H. Howell, M. J. Fluss, I. J. Rosenberg, and P. Meyer, Low-energy, high-intensity positron beam experiments with a Linen, Nucl. Instr. Meth. B. 10 /11: 373 (1985).ADSCrossRefGoogle Scholar
  52. 52.
    R. N. West, Positron studies of lattice defects in metals, in: “Positrons in Solids”, Ref. 8, p. 89 (1979).CrossRefGoogle Scholar
  53. 53.
    A. Seeger, The study of defects in crystals by positron annihilation, App1. Phys. 4: 183 (1974).Google Scholar
  54. 54.
    K. Maier, Defects in thermal equilibrium: Positron annihilation and other methods, in: “Positron Solid-State Physics”, Ref. 9, p. 265 (1983).Google Scholar
  55. 55.
    H. E. Schaefer, Thermal equilibrium studies of vacancies in metals by positron annihilation, in: “Positron Annilation”, Ref. 6, p. 369 (1982).Google Scholar
  56. 56.
    B. T. A. McKee, W. Triftshäuser, A. T. Stewart, Vacancy-formation energies in metals from positron annihilation, Phys. Rev. Lett. 28: 358 (1972).ADSCrossRefGoogle Scholar
  57. 57.
    R. W. Siegel, Positron annihilation spectroscopy of defects in metals - an assessment, in: “Positron Annihilation”, Ref. 6, p. 351 (1982).Google Scholar
  58. 58.
    C.-K. Hu, S. Berko, G. R. Gruzalski, W. K. Warburton, Positron annihilation lifetime and Doppler profile studies in Pb, Pb(Tl), and Pb(Cd), in: “Positron Annihilation”, Ref. 5, p. 231 (1979).Google Scholar
  59. 59.
    W. Lühr-Tanck, Th. Kurschat, Th. Hehenkamp, High resolution positron-lifetime study in silver, Phys. Rev. B.31: 6994 (1985).Google Scholar
  60. 60.
    K. Maier, M. Peo, B. Salle, H. E. Schaefer, A. Seeger, High-temperature positron annihilation and vacancy formation in refractory metals, Phil. Mag. A 40: 701 (1979).ADSCrossRefGoogle Scholar
  61. 61.
    L. C. Smedskjaer, Positron prevacancy effects in pure annealed metals, in: “Positron Solid-State Physics”, Ref. 9, p. 597 (1983).Google Scholar
  62. 62.
    G. M. Hood and R. J. Schultz, Positron annihilation and vacancy formation in Al, J. Phys. F. 10: 545 (1980).ADSCrossRefGoogle Scholar
  63. 63.
    M. J. Fluss, S. Berko, B. Chakraborty, P. Lippel, R. W. Siegel, A mono-vacancy divacancy model interpretation of positron annihilation measurements in aluminium, J. Phys. F. 14: 2855 (1984).ADSCrossRefGoogle Scholar
  64. 64.
    L. C. Smedskjaer, M. J. Fluss, D. G. Legnini, M, K. Chason, R. W. Siegel, Positron annihilation measurements of vacancy formation in Ni and Ni(Ge), in: “Positron Annihilation”, Ref. 6, p. 526 (1982).Google Scholar
  65. 65.
    H. E. Hansen, B. Nielsen, K. Petersen, Annealing of high energy nitrogen and oxygen radiation damage in molybdenum studied by positrons, Rad. Effects 77: 1 (1983).CrossRefGoogle Scholar
  66. 66.
    A. Seeger, The interpretation of radiation damage in metals, and W. Schilling, P. Ehrhart, K. Sonnenberg, Interpretation of defect reactions in irradiated metals by the one interstitial model, both in: “Fundamental Aspects of Radiation Damage in Metals”, M. T. Robinson, F. W. Yong Jr., Eds., US-ERDA CONF-751006, Oak Ridge, Tennessee (1975), pp. 493 and 470.Google Scholar
  67. 67.
    B. Nielsen, A. van Veen, L. M. Caspers, H. A. Filius, H. E. Hansen, K. Petersen, The interaction between nitrogen and defects in Mo studied by the positron annihilation technique, in: “Positron Annihilation”, Ref. 6, p. 438 (1982).Google Scholar
  68. 68.
    P. Hautojärvi, H. Huomo, M. Puska, A. Vehanen, Vacancy recovery and vacancy-hydrogen interaction in niobium and tantalum studied by positrons, Phys. Rev. B. 32: 4326 (1985).CrossRefGoogle Scholar
  69. 69.
    H. Ullmaier, Ed., Proceedings of the “International Symposium on Fundamental Aspects of Helium in Metals”, Rad. Effects 78:1–426 (1983).Google Scholar
  70. 70.
    K. O. Jensen, M. Eldrup, J. H. Evans, Positron annihilation studies of copper and nickel containing high concentrations of krypton, in:Positron Annihilation Ref. 7 (1985) and M. Eldrup, J. H. Evans,A positron annihilation study of copper containing a high concentration of krypton, J. Phys. F. 12:1265 (1982)Google Scholar
  71. 71.
    J. H. Evans and D. J. Mazey, Evidence for solid krypton bubbles in copper, nickel and gold at 293K, J. Phys. F, 15:Lí (1985).Google Scholar
  72. 72.
    A. Vehanen, P. Hautojärvi, J. Johansson, J. Yli-Kauppila, P. Moser, Vacancies and carbon impurities in a-iron: Electron irradiation, Phys. Rev. B. 25: 762 (1982).CrossRefGoogle Scholar
  73. 73.
    P. Hautojärvi, L. Pöllänen, A. Vehanen, J. Yli-Kauppila, Vacancies and carbon impurities in a-iron: Neutron irradiation, J. Nucl. Mat. 114: 250 (1983).ADSCrossRefGoogle Scholar
  74. 74.
    K. Petersen, Studies of nonequilibrium defects in metals, in: “Positron Solid-State Physics”, Ref. 9, p. 298 (1983).Google Scholar
  75. 75.
    A. Vehanen, J. Mäkinen, P. Hautojärvi, H. Huomo, J. Lahtinen, R. M. Nieminen, S. Valkealahti, Near-surface defect profiling with slow positrons: Argon-sputtered A1(110), Phys. Rev. B. 32:7561 (1985)Google Scholar
  76. 76.
    W. Triftshäuser and G. Kegel, Defect structures below the surface in metals investigated by monoenergetic positrons, Phys. Rev. Lett. 48: 1741 (1982).ADSCrossRefGoogle Scholar
  77. 77.
    D. A. Fischer, K. G. Lynn, W. E. Frieze, Reemitted-positron energy-loss spectroscopy A novel probe of adsorbate vibrational levels, Phys. Rev. Lett. 50: 1149 (1983).ADSCrossRefGoogle Scholar
  78. 78.
    J. Bruce, J, N. Sherwood, N. J. Pedersen, M. Eldrup, A positron annihilation study of the plastic crystal cyclooctane, in: “Positron Annihilation”, Ref. 7, p. 181 (1985).Google Scholar
  79. 79.
    Eldrup, O. Mogensen, G. Trumpy, Positron lifetimes in pure and doped ice and in water, J. Chem. Phys. 57: 495 (1972).ADSCrossRefGoogle Scholar
  80. 80.
    O. E. Mogensen and M. Eldrup, Vacancies in pure ice studied by positron annihilation techniques, J. Glaciology 21:85 (1978), and Positronium Bloch function and trapping of positronium in vacancies in ice, Risø Rep, No. 366 (1977).Google Scholar
  81. 81.
    E. Mogensen, G. Kvajie, M. Eldrup, M. Milosevi6-Kvaji6, Angular correlation of annihilation photons in ice single crystals, Phys. Rev. B 4: 71 (1971).CrossRefGoogle Scholar
  82. 82.
    K. Fujiwara, Motion of positronium in some insulating crystals, in: “Positron Annihilation”, Ref. 6, p. 615 (1982).Google Scholar
  83. 83.
    M. Eldrup, Vacancy migration and void formation in,; irradiated ice, J. Chem. Pis. 64:5283 (1976), and M. Eldrup, 0, E. Mogensen, J. H. Bitgram, Vacancies in HF-doped and in irradiated ice by positron annihilation techniques, J. Glaciology 21: 101 (1978).Google Scholar
  84. 84.
    D. Lightbody, J. N. Sherwood, M. Eldrup, Vacancy formation energies in plastic crystals using positron annihilation techniques, Mol. Cryst. Liq. Cryst. 96: 197 (1983).CrossRefGoogle Scholar
  85. 85.
    M. Eldrup, On positron studies of molecular crystals, in: “Positron Annihilation”, Ref. 6, p. 753 (1982).Google Scholar
  86. 86.
    M. Eldrup, N. J. Pedersen, J. N. Sherwood, Positron annihilation study of defects in succinonitrile, Phys. Rev. Lett. 43: 1407 (1979).ADSCrossRefGoogle Scholar
  87. 87.
    J. N. Sherwood, Ed., “The Plastically Crystalline State”, Wiley, Chichester (1979).Google Scholar
  88. 88.
    J. G. Byrne, A review of positron studies of the annealing of the cold worked state, Met. Trans. A 10A:791 (1979) and J. G. Byrne, Dislocation studies with positrons, in: “Dislocations in Solids”, Vol, 6, F. R. N. Nabarro, Ed., North-Holland, Amsterdam (1983) p. 265.Google Scholar
  89. 89.
    H. Fukushima and M. Doyama, The formation energies of a vacancy in pure Cu, Cu-Si, Cu-Ga, and Cu-7Mn solid solutions by positron annihilation, J. Phys. F. 6: 677 (1976).ADSCrossRefGoogle Scholar
  90. 90.
    G. Dlubek, O. Brummer, P. Hautojärvi, J. Yli-Kauppila, A positron study of age-hardenable Al-Zn-Mg alloys, Phil. Mag. A 44:239 (1981), and R. Krause, G. Dlubek, G. Wendrock, Structural changes during post-ageing of an Al-Zn (15%) alloy at 100°C studied by positron annihilation, small angle X-ray scattering and microhardness measure-ments, Cryst. Res. Technol. 20:1495 (1985) and refs. thereinGoogle Scholar
  91. 91.
    N. Shiotani, Positron studies of amorphous alloys, in: “Positron Annihilation”, Ref. 6, p. 561 (1982).Google Scholar
  92. 92.
    P. Hautojärvi and J. Yli—Kauppila, Positron annihilation in amorphous metals, Nuc1. Instr. Meth. 199: 75 (1982).CrossRefGoogle Scholar
  93. 93.
    S. Dannefaer, N. Fruensgaard, S. Kupca, B. Hogg, D. Kerr, A positron study of plastic deformation of silicon, Can. J. Phys. 61:451 (1983) and references therein.Google Scholar
  94. 94.
    W Fuhs, U. Holzhauer, S. Manti, F. W. Richter, R. Sturm, Annihilation of positrons in electron—irradiated Silicon crystals, Phys. Stat. Sol. (b) 89: 69 (1978).ADSCrossRefGoogle Scholar
  95. 95.
    S. Dannefaer, P. Mascher, D. Kerr, Monovacancy formation enthalpy in silicon (preprint).Google Scholar
  96. 96.
    S. Dannefaer, D. Kerr, B. G. Hogg, A study of defects in amorphous silicon films, J. Appt. Phys. 54: 155 (1983).ADSCrossRefGoogle Scholar
  97. 97.
    A. Dupasquier, Positrons in ionic solids, in: “Positrons in Solids”, Ref. 8, p. 197 (1979).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • Morten Eldrup
    • 1
  1. 1.Metallurgy DepartmentRisø National LaboratoryRoskildeDenmark

Personalised recommendations