Guanidines pp 383-438 | Cite as

Natural Guanidino Compounds

  • Y. Robin
  • B. Marescau


Guanidine was given this name because it was first isolated from the oxidation products of guanine (Strecker, 1861). This substance and many of the mono-, di- (symmetrical and asymmetrical) and tri-substituted derivatives constitute a large and important family of natural nitrogeneous compounds.


Urea Cycle Terminal Amine Crown Gall Tumor Guanidine Derivative Guanidino Compound 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ackermann, D., 1935a, Asterubin, eine schwefelhaltige Guanidinverbindung der belebten Natur, Z. physiol. Chem., 232: 206.CrossRefGoogle Scholar
  2. Ackermann, D., 19356, Synthese des Asterubins, Z. physiol.Chem., 234: 208.Google Scholar
  3. Ackermann, D. and Heinsen, H.A., 1935, Uber die physiologische Wirkung des Asterubins und anderer, zum Teil neu dargestellter, schwefelhaltiger Guanidinderivate, Z. physiol. Chem., 235: 115.Google Scholar
  4. Ackermann, D. and List, P.H., 1957, Konstitutionsermittlung des Herbipolins, einer neuen tierischen Purinbase, Z. physiol. Chem., 309: 286.Google Scholar
  5. Ackermann, D. and List, P.H., 1960, Zur Konstitution des Zooanemonins und des Herbipolins, Z. physiol. Chem., 318: 281.CrossRefGoogle Scholar
  6. Ackermann, D., and Menssen, H.G., 1959, Low-molecular nitrogenous constituents of the leather coral Alcyonium digitatum, Z. physiol. Chem., 317: 144.CrossRefGoogle Scholar
  7. Ackermann, D. and Mohr, M., 1937, The Occurrence of octopine,agmatine and arginine in the octopod, Eledone moschata, Z. physiol. Chem., 250: 244.CrossRefGoogle Scholar
  8. Ackermann, D. and Müller, E., 1935, Zweite Synthese des Asterubins, Z. physiol. Chem., 235: 233.CrossRefGoogle Scholar
  9. Ackermann, D. and Pant, R., 1961, Constituents of the sponge Calyx nicacensis, Z. physiol. Chem., 326: 197.CrossRefGoogle Scholar
  10. Adams, W.S., Davis, F.W. and Hansen, L.E., 1964, Determination of serum creatinine by ion exchange chromatography and ultraviolet spectrophotometry, Anal. Chem., 36: 2209.Google Scholar
  11. Albrecht, G.P., 1921, Chemical study of several marine molluscs of the pacific coast, J. Biol. Chem., 45: 395.Google Scholar
  12. Allan, J.D., Cusworth, D.C., Dent, C.E. and Wilson, V.K., 1958, A disease, probably hereditary, characterized by severe mental deficiency and a constant gross abnormality of amino acid metabolism, Lancet, 1: 182.PubMedCrossRefGoogle Scholar
  13. Allende, C.C. and Allende, J.E., 1964, Purification and substrate specificity of arginyl-ribonucleic acid synthetase from rat liver, J. Biol. Chem., 239: 1102.PubMedGoogle Scholar
  14. Alles, G., 1926, The comparative physiological action of some derivatives of guanidine. J. Pharmacol. a. Therap., 28: 251.Google Scholar
  15. Andes, J.E., Linegar, C.R. and Myers, V.C., 1937, Guanidine-like substances in blood. II. Blood guanidine in nitrogen retention and hypertension, J. Lab. and Clin. Med. 22: 1209.Google Scholar
  16. Angelini, C., Micoglio, G.F. and Trevisan, C., 1980, Guanidine hydrochloride in infantile and juvenile spinal muscular atrophy. A double blind controlled study, Acta Neurol., ( Napoli ), 6: 460.Google Scholar
  17. Armstrong, M.D. and Robinow, M., 1967, A case of hyperlysinemia: biochemical and clinical observations, Pediatrics, 39: 546.PubMedGoogle Scholar
  18. Auclair, M.C., Adolphe, M., Guillou, Y. and Robin, Y., 1976, Effet de la phascoline et de la phascolosomine, nouveaux dérivés guanidiques naturels, sur les cellules cardiaques de rat en culture, Compt. Rend. Soc. Biol., 170: 65.Google Scholar
  19. Audit, C., Viala, B. and Robin, Y., 1967, Biogénèse des dérivés diguanidiques chez la sangsue, Hirudo medicinalis L. I. Origine des groupements guanidiques et de la chaine carbonée, Comp. Biochem. Physiol., 22: 775.PubMedCrossRefGoogle Scholar
  20. Baker, J.T., 1976a, Physiologically active substances from marine organisms, Aust. J. Pharm. Sci., 5: 89.Google Scholar
  21. Baker, J.T., 1976b, Some metabolites from australian marine organisms, Pure Appl. Chem. 48: 35.Google Scholar
  22. Baker, J.T. and Murphy, V., 1976, in: “Handbook of Marine Science; Compounds from Marine Organisms”, Vol.I., CRC Press, Cleveland, Ohio.Google Scholar
  23. Baldwin, E., 1947, in: “Dynamic Aspects of Biochemistry”, University Press, Cambridge, 1st ed.Google Scholar
  24. Baldwin, J. and Opie, A.M., 1978, On the role of octopine dehydrogenase in the adductor muscles of bivalve molluscs, Comp. Biochem. Physiol., 61B: 85.Google Scholar
  25. Balinski, J.B., 1970, Nitrogen Metabolism in Amphibians, in: “ Comparative Biochemistry of Nitrogen Metabolism ”. 2. The Vertebrates., J.W. Campbell,ed., Academic Press, New -York.Google Scholar
  26. Bannister, B.and Argoudelis, A.D., 1963, The chemistry of bluensomycin. II. The structure of bluensomycin, J. Am. Chem. Soc., 85: 234.CrossRefGoogle Scholar
  27. Barber, J.T. and Boulter, D., 1963, Araininosuccinic acid in germinating seeds of Vicia faba, Nature, 197: 1112.CrossRefGoogle Scholar
  28. Barger, G. and White, F.D., 1922, The constitution of galegin, Biochem. J., 17: 827.Google Scholar
  29. Barlow, C.B. and Anderson, L., 1972, A study of the structure of bluensomycin with the tetramincopper reagent, J. Antibiotics, 25: 281.CrossRefGoogle Scholar
  30. Barnes, R.L., 1962, Formation of Y-guanidinobutyric acid in Pine tissues, Nature, 193: 781.PubMedCrossRefGoogle Scholar
  31. Bartz, Q.R., Ehrlich, J., Mold, J.D., Penner, M.A. and Smith, M.R., 1951, Viomycin, a new tuberculostatic antibiotic, Am. Rev. Tuberc., 63: 4.PubMedGoogle Scholar
  32. Beatty, I.M. and Magrath, D.I., 1959, Synthesis of DL- and L- lombricine, Nature, 183: 591.CrossRefGoogle Scholar
  33. Beatty, I.M., Magrath, D.I. and Ennor, A.H., 1959, Occurrence of D-serine in lombricine, Nature, 183: 591.CrossRefGoogle Scholar
  34. Beis, I. and Newsholme, E.A., 1975, The contents of adenine nucleotides, phosphagens and some glycolytic intermediates in resting muscles from vertebrates and invertebrates, Biochem. J., 152: 23.PubMedGoogle Scholar
  35. Bell, E.A., 1958, Canavanine and related compounds in Leguminosae, Biochem. J., 70: 617PubMedGoogle Scholar
  36. Bell, E.A., 1960, Canavanine in the Leguminosae, Biochem. J., 75: 618.Google Scholar
  37. Bell, E.A., 1961, Isolation of a new amino acid from Lathyrus tingitanus, Biochim.Biophvs.Acta, 47: 602.CrossRefGoogle Scholar
  38. Bell, E.A., 1962a, a,y-diaminobutyric acid in seeds of twelve species of Lathyrus and identification of a new natural amino acid, L-homoarginine, in seeds of other species toxic to man and domestic animals, Nature, 193: 1078.Google Scholar
  39. Bell, E.A., 1962b, The isolation of L-homoarginine from seeds of Lathyrus cicera, Biochem. J., 85: 91.Google Scholar
  40. Bell, E.A., 1963, New amino acid, y-hydroxyhomoarginine in Lathyrus, Nature, 199: 70.PubMedCrossRefGoogle Scholar
  41. Bell, E.A., 1964, The isolation of y-hydroxyhomoarginine, as its lactone, from seeds of Lathyrus tingitanus, its biosynthesis and distribution, Biochem. J., 91: 358.PubMedGoogle Scholar
  42. Bell, E.A., 1965, Homoarginine, y-hydroxyarginine and related compounds, in: “Comparative Biochemistry of Arginine and Derivatives”, G.E.W. Wolstenholme and M.P. Cameron, eds., J. and A. Churchill, Ltd., London.Google Scholar
  43. Bell, E.A. and Foster, R.G., 1962, Structure of lathyrine, Nature, 194: 91.PubMedCrossRefGoogle Scholar
  44. Bell, E.A. and Przybylska, J., 1965, The origin and site of synthesis of the pyrimidine ring in the amino acid, Lathyrin, Biochem. J., 94: 35p.Google Scholar
  45. Bell, E.A. and Tirimanna, A.S.L., 1963, Occurrence of y-hydroxyarginine in plants, Nature, 197: 901.PubMedCrossRefGoogle Scholar
  46. Bell, E.A. and Tirimanna, A.S.L., 1964, The isolation of y-hydroxyarginine, as its lactone, from seeds of Vicia sativa, and the identification of y-hydroxyornithine as a naturally occurring amino acid, Biochem. J., 91: 356.Google Scholar
  47. Bergquist, P.R. and Hartman, W.D., 1969, Free amino acid patterns and the classification of the Demospongiae, Mar. Biol., 3: 247.CrossRefGoogle Scholar
  48. Blass, J.P., 1960, The simple monosubstituted guanidines of mammalian brain, Biochem. J., 77: 484.Google Scholar
  49. Bloch, K. and Schoenheimer, R., 1941, The biological precursors of creatine, J. Biol. Chem., 138: 167.Google Scholar
  50. Böhles, H., Cohen, B.D. and Michalk, D., 1982, Guanidinosuccinic acid excretion in argininosuccinic aciduria, in: “Urea Cycle Diseases”, A. Lowenthal, A. Mori and B. Marescau, eds., Plenum Press, New York.Google Scholar
  51. Bomhoff, G., Klapwijk, P.M., Rester, H.C.,Schilperoort, R.A., Hernalsteens, J.P. and Schell, J., 1976, Octopine and nopaline synthesis and breakdown genetically controlled by a plasmid of Agrobacterium tumefaciens, Mol. Gen. Genet., 145: 171.CrossRefGoogle Scholar
  52. Borsook, H. and Dubnoff, J.W., 1940, The formation of creatine from glycocyamine in the liver, J. Biol. Chem., 132: 559.Google Scholar
  53. Borsook, H. and Dubnoff, J.W., 1941, The formation of glycocyamine in animal tissues J. Biol. Chem., 138: 389.Google Scholar
  54. Boulanger, P. and Osteux, R., 1956, Action de la L-aminoacide-dehydrogenase de foie de dindon ( Meleagris gallopavo L.) sur les acides aminés basiques, Biochim. Biophys. Acta, 21 552.Google Scholar
  55. Boulanger, P. and Osteux, R., 1960, Arginine metabolism in the white rat, Colloq.Intern. Centre Natl. Recherche Sci. ( Paris ), 92: 326.Google Scholar
  56. Brander, G. and Virtanen, A.I., 1964, a-keto-6-guanidovaleriansaüre and y-hydroxy-aketoglutarsaüre in grünen Teilen und Semen von Phlox Pflanzen, Acta Chem. Scand., 18: 574.Google Scholar
  57. Brnjevic, K. and Phillis, J.W., 1963, Iontophoretic studies of neurones in the mammalian cerebral cortex, J. Physiol., 165: 274.Google Scholar
  58. Brockmann, H. and Musso, H., 1954, Geomycin, ein neues, gegen gramnegative Bakterien wirksames Antibioticum, Naturwissenschaften, 41: 451.Google Scholar
  59. Buchwald, H.D., Durham, L., Fisher, H.G., Harada, R., Mosher, H.S., Kao, C.Y. and Fuhrman, F.A., 1964, Identity of tarichatoxin and tetrodotoxin, Science, 143: 474PubMedCrossRefGoogle Scholar
  60. Buergi, W., Colombo, J.P. and Richterich, R., 1966, Thin-layer chromatography of the acid-and ether-sol. DNP-aminoacids in urine, Rhin. Wochschr., 43: 1202.Google Scholar
  61. Burns, D. and Sharpe, J.S., 1917, The parathyroids: Tetania parathyreopriva: Its nature, cause and relations to idiopathic tetany. V. Guanidine and methylguanidine in the blood and urine in tetania parathyreopriva and in the urine of idiopathic tetany, Quart. J. Exp. Physiol., 10: 345.Google Scholar
  62. Bycroft, B.W., Croft, L.R., Johnson, A.W, and Webb, T., 1972a, Viomycin. Part I. The structure of the guanidine-containing unit, J. Chem. Soc., Perkin I., p. 820.Google Scholar
  63. Bycroft, B.W., Cameron, D., Croft, L.R., Hassanali-Walji, A., Johnson, A.W. and Webb,T. 1972b, Viomycin. Part II. The structure of the chromophore, J. Chem. Soc., Perkin I. p. 827.Google Scholar
  64. Cammarata, P.S. and Cohen, P.P., 1950, Scope of the transamination reaction in animal tissues, J. Biol. Chem., 187: 439.Google Scholar
  65. Cantoni, G.L. and Vignos, P.J., 1954, Enzymic mechanisms in transmethylation. V. Enzymic mechanism in creatine synthesis, J. Biol. Chem., 209: 647.Google Scholar
  66. Cariello, L., Crescenzi, S. and Prota, G., 1973, Zoanthoxanthin, a heteroaromatic base from Parazoanthus cfr. axinellae (Zoantharia): Structure confirmation by X-ray cristallography, J. Chem. Soc. Chem. Commun., p. 99.Google Scholar
  67. Cariello, L., Crescenzi, S., Prota, G., Capasso, S., Giordano, F. and Mazzarella, L., 1974a, Zoanthoxanthin, a natural 1,3,5,7- tetracyclopent- (f) - azulene from Parazoanthus axinellae, Tetrahydron, 30: 3281.CrossRefGoogle Scholar
  68. Cariello, L., Crescenzi, S., Prota, G. and Zanetti, L., 1974b, Zoanthoxanthins of a new structural type from Epizoanthus arenaceus, Tetrahydron, 30: 4191.CrossRefGoogle Scholar
  69. Cariello, L., Crescenzi, S., Prota, G. and Zanetti, L., 1979, A survey on the distribution of zoanthoxanthins in some marine invertebrates, Comp. Biochem. Physiol., 63B: 77.Google Scholar
  70. Carr, M.H. and Schloerb, P.R., 1960, Analysis for guanidine and methylguanidine in uremic plasma, Anal. Biochem., 1: 221.Google Scholar
  71. Carter, G.T. and Rinehart, K.L., 1978, Acarnidines, novel antiviral and antimicrobial compounds, J. Am. Chem. Soc., 100: 4302.Google Scholar
  72. Cheng, M.T. and Rinehart, K.L., 1978, Polyandrocarpidines: antimicrobial and cytotoxic agents from a marine tunicate ( Polyandrocarpa sp.) from the gulf of California, J. Am. Chem. Soc., 100: 7409.Google Scholar
  73. Chevolot, L., 1981, Guanidine Derivatives, in: “Marine Natural Products”, P.J.Scheuer, ed., Acad. Press, London. Vol. 4.Google Scholar
  74. Chevreul, M., 1835, Sur la composition chimique du bouillon de viande, J. Pharm. Sci. acces., 21: 231.Google Scholar
  75. Cimino, G., De Stefano, S. and Minale, L., 1974, Occurrence of hydroxyhydroquinone and 2- aminoimidazole in sponges, Comp. Biochem. Physiol., 47B: 895.Google Scholar
  76. Cimino, G., De Stefano, S., Minale, L. and Sodano, G., 1975, Metabolism in porifera. III. Chemical patterns and the classification of the Demospongiae, Comp. Biochem. Physiol., 50B: 279.Google Scholar
  77. Cohen, B.D., 1970, Guanidinosuccinic acid in uremia. Arch. Intern. Med., 126: 846.Google Scholar
  78. Cohen, B.D. and Patel, H., 1982, Guanidinosuccinic acid and the alternate urea cycle, in: “Urea Cycle Diseases”, A. Lowenthal, A. Mori and B. Marescau,eds., Plenum Press, New York.Google Scholar
  79. Cohen, B.D., Stein, I.M. and Bonas, J.E., 1968, Guanidinosuccinic aciduria in uremia. A possible alternate pathway for urea synthesis, Amer. J. Med., 45: 63.Google Scholar
  80. Cohen, S.S., 1963, Sponges, cancer chemotherapy and cellular aging, Perspect. Biol. Med., 6: 215.Google Scholar
  81. Cohn, E.J. and Edsall, J.T., 1943, in: “Proteins, Amino Acids and Peptides as Ions and Dipolar Ions”, Reinhold Publishing Corporation, New York.Google Scholar
  82. Cooper, A.J.L. and Meister, A., 1978, Cyclic forms of the a-keto acid analogs of argi- nine, citrulline, homoarginine and homocitrulline, J. Biol. Chem., 253: 5407.Google Scholar
  83. Corrall,R.A., Orazi3O.O.and de Petruccelli, M.F., 1970, Synthesis of pterogynine and isolation of its isomer pterogynidine, a new guanidine alkaloid, J. Chem. Soc. D, p. 556.Google Scholar
  84. Corrall,R.A., Orazi, 0.0. and de Petrucelli, M.F., 1972, Guanidine alkaloids of Pterogyne nitans Tul,, Rev. Latinoamer. Quim., 2: 178.Google Scholar
  85. Corrigan, J.J., 1970, Nitrogen Metabolism in Insects, in: “Comparative Biochemistry of Nitrogen Metabolism”. 1. The Invertebrates, J.W. Campbell ed., Academic Press, New York.Google Scholar
  86. Curtis, D.R. and Watkins, J.C., 1960, The excitation and depression of spinal neurones by structurally related amino acids, J. Neurochem., 6: 117.PubMedCrossRefGoogle Scholar
  87. Cusworth, D.C. and Dent, C.E., 1960, Renal clearances of amino acids in normal adults and in patients with amino-aciduria, Biochem. J., 74: 550.Google Scholar
  88. Davison, D.C. and Elliot, W.H., 1952, Enzymatic reaction between arginine and fumarate in plant and animal tissues, Nature, 169: 313..Google Scholar
  89. Davuluri, S.P., Hird, F.J.R. and Mc Lean, R.M., 1981, A re-appraisal of the function and synthesis of phosphoarginine and phosphocreatine in muscle, Comp. Biochem. Physiol., 69B: 329.CrossRefGoogle Scholar
  90. Dell, A., Morris, H.R., Hecht, S.M. and Levin, M.D., 1980, Characterisation of guanidine containing antibiotics: field desorption mass spectrometry of bleomycin B2 and phleomycins D and E, Biochem. Biophys. Res. Commun., 97: 987.Google Scholar
  91. Di Jeso, F., 1967, Surlla présence d’un phosphagène (phosphoarginine) et de la transférase assurant sa synthèse dans une bactérie: Escherichia coli, Compt. Rend. Soc. Biol., 161: 584.Google Scholar
  92. Dubnoff, J.W. and Borsook, H., 1941, A micromethod for the determination of glycocyamine in biological fluids and tissue extracts, J. Biol. Chem., 138: 381.Google Scholar
  93. Durzan, D.J. and Richardson, R.G., 1966, The occurrence and role of a-keto-6-guanidinovaleric acid in white spruce (Picea glauca ( Moench) Voss), Can. J. Biochem., 44: 141.Google Scholar
  94. Edwards, C. and Kuffler, S.W., 1959, The blocking effect of y-aminobutyric acid ( GABA) and the action of related compounds on single nerve cells, J. Neurochem., 4: 19.Google Scholar
  95. Eggleton, P. and Eggleton, G.P., 1927, Inorganic phosphate and a labile form of organic phosphate in the gastrocnemius of the frog, Biochem. J., 21: 190.PubMedGoogle Scholar
  96. Ellington, W.R., 1980, Partial purification and characterization of a broadly-specific octopine dehydrogenase from the tissues of the sea anemone, Bunodosoma cavernata (Bost), Comp. Biochem. Physiol., 67B: 625.Google Scholar
  97. Engeland, R., 1908, Uber den Nachweis organischer Basen im Harn, Z. Physiol. Chem., 57: 49.Google Scholar
  98. Ennor, A.H. and Morrison, J.F., 1958, Biochemistry of the phosphagens and related guanidines, Physiol. Rev., 38: 631.Google Scholar
  99. Farley, J.M., Glavinovic, M.I., Watanabe, S. and Narahashi, T., 1979, Stimulation of transmitter release by guanidine derivatives, Neuros:ci., 4: 1511.CrossRefGoogle Scholar
  100. Fearon, W.R. and Bell, E.A., 1955, Canavanine: detection and occurrence in Colutea arborescens, Biochem. J., 59: 221.Google Scholar
  101. Findlay, L. and Sharpe, J.S., 1920, Adult tetany and methylguanidin; a metabolic study, Quart. J. Med., 13: 433.Google Scholar
  102. Finlay, A.C., Hobby, G.L., Hochstein, F., Lees, T.M., Lenert, T.F., Means, J.A., P’an, S.Y., Regna, P.P., Routien, J.B., Sobin, B.A., Tate, K.B. and Kane, J.H., 1951, Viomycih, a new antibiotic active against mycobacteria, Am. Rev. Tuberc., 63: 1.PubMedGoogle Scholar
  103. Fisher, B., Keller-Schierlein, W., Kneifel, H., König, W.A., Loeffler, W., Müller, A., Muntwyler, R. and Zähner, H., 1973, Stoffwechselprodukte von Mikroorganismen.118 Mitteilung. 6- N- hydroxy- L -arginin, ein Aminosaüre-Antagonist aus Nannizzia gypsea, Arch.Mikrobiol., 91: 203.CrossRefGoogle Scholar
  104. Fiske, C.H. and Subbarow, Y., 1929, Phosphocreatine, J. Biol. Chem., 81: 629. Forenza, S., Minale, L., Riccio, R. and Fattorusso, E., 1971, New bromo-pyrrole derivatives from the sponge Agelas oroides, J. Chem. Soc. Chem. Commun., 1129.Google Scholar
  105. Formstecher, P., 1978, L’argininosuccinylurie, in: “Le Cycle de l’Urée et ses Anomalies”, J.P. Farriaux, ed., Doin, Paris.Google Scholar
  106. Fort, L., Dando, P.R., Rouzé, P., Monneuse, M.O. and Olomucki, A., 1982, Immunological comparative studies of octopine dehydrogenase and other “pyruvate reductases” from different species, Comp. Biochem. Physiol., 73B: 865.Google Scholar
  107. Fühner, H., 1923, “Die Guanidingruppe”, Heffters Handb. d. exp. Pharmakol., 1: 684.Google Scholar
  108. Fujii, A., Takita, T., Maeda, K. and Umezawa, H., 1973, Chemistry of bleomycin. XI. Structures of the terminal amines, J. Antibiot., 26: 398.Google Scholar
  109. Fujita, Y., 1959, y-hydroxyarginine, a new guanidino compound from a sea cucumber, Bull. Chem. Soc. Japan., 32: 439.Google Scholar
  110. Fujita, Y., 1960, y-hydroxyarginine, a new guanidino compound from a sea cucumber. II. Determination of the configuration, Bull. Chem. Soc. Japan, 33: 1379.Google Scholar
  111. Gäde, G., 1980, Biological role of octopine formation in marine molluscs, Marine Biology Letters, 1: 121.Google Scholar
  112. Gäde, G. and Zebe, E., 1973, Uber den Anaerobiosestoffwechsel von Molluskenmuskeln, J. Comp. Physiol., 85: 291.CrossRefGoogle Scholar
  113. Gale, E.F., 1946, The bacterial amino acid decarboxylases, Adv. in Enzymol., 6: 1.Google Scholar
  114. Garcia, E.E., Benjamin, L.E. and Fryer, I.R., 1973, Reinvestigation into the structure of oroidin, a bromopyrrole derivative from marine sponge, J. Chem. Soc. Chem. Commun., p. 78.Google Scholar
  115. Garcia, I., Roche, J. and Tixier, M., 1956, Sur le métabolisme de la L-arginine chez les insectes.I., Bull. Soc. Chim. Biol., 38: 1423.Google Scholar
  116. Giovannetti, S., Balestri, P.L. and Barsotti, G., 1973, Methylguanidine in uremia, Arch. Intern. 131: 709.Google Scholar
  117. Glasby, J.S., 1979, Encyclopaedia of antibiotics, John Wiley and Sons Ltd., Chichester, New York.Google Scholar
  118. Goldmann-Menagé, A., 1970, Recherches sur le métabolisme azoté des tissus de crowngall cultivés in vitro, Ann. Sci. Nat. Bot., Paris, 12ème série, 11 223.Google Scholar
  119. Goldmann, A., 1977, Octopine and nopaline dehydrogenases in crown-gall tumors, Plant Sci. Lett., 10: 49.Google Scholar
  120. Goldmann, A., Tempé, J. and Morel, G., 1968, Quelques particularités de diverses souches d’Agrobacterium tumefaciens, Compt. Rend. Soc. Biol., 162: 630.Google Scholar
  121. Coldmann, A., Thomas, D.W. and Morel, G., 1969, Sur la structure de la nopaline, métabolite anormal de certaines tumeurs de crown gall, C. R. Acad. Sci., Paris, 268: 852.Google Scholar
  122. Goto, T., 1980, Bioluminescence of marine organisms, in: “Marine Natural Products”, P.J. Scheuer,ed., Acad. Press, New York. Vol. 3.Google Scholar
  123. Greenwald, I., 1946, The presence of creatine in the testes of various invertebrates. The preparation of creatine phosphoric acid from fish testes, J. Biol. Chem., 162: 239.Google Scholar
  124. Guggenheim, M., 1951, Die Biogenen Amine, S. Karger Verlag, Basel, Suisse.Google Scholar
  125. Guillou,, Y. and Robin, Y., 1973, Phascoline (N-(3-guanidinopropionyl)-2-hydroxy-nheptylamine) and phascolosomine (N-(3-guanidinoisobutyryl)-2-methoxy-n-heptylamine), two new guanidino compounds from sipunculid worms. Isolation and structure, J. Biol. Chem., 248: 5668.Google Scholar
  126. Guillou, Y. and Robin, Y., 1979, Présence de a-N-acétyl-dgmatine chez des Cnidaires, Actinia equina et Actinia fragacea, Compt. Rend. Soc. Biol., 173: 576.Google Scholar
  127. Guyon, P., Chilton, M.D., Petit, A. and Tempe, J., 1980, Agropine in “null-type” crown gall tumors: evidence for the generality of the opine concept, Proc. Natl. Acad. Sci., USA, 77: 26–93.Google Scholar
  128. Haurowitz, F. and Waelsch, H., 1926, Uber die chemische Zusammensetzung der Qualle Velella spirans, Z. physiol. Chem., 161: 300.CrossRefGoogle Scholar
  129. Hedin, S.G., 1895, Uber die Bildung von Arginin aus Protein Körpern, Z. physiol. Chem., 21: 155.Google Scholar
  130. Hiramatsu, C., 1980a, Guanidino compounds in mouse brain. I. Brain guanidino compound levels in twelve strains of mice, Okayama Igakkai Zasshi, 92: 419.Google Scholar
  131. Hiramatsu, C., 1980b, Guanidino compounds in mouse brain. II. Guanidino compound levels in brain in relation to convulsions, Okayama Igakkai Zasshi, 92: 427.Google Scholar
  132. Hirata, Y., Goto, T. and Hosoya, S., 1955, Structure of roseothricin, 3ème Congrès International de Biochimie, Résumé des communications, p. 95.Google Scholar
  133. Hollenbeak, K.H. and Schmitz, F.J., 1977, Aplysinopsin: antineoplastic tryptophane derivative from the marine sponge Verongia spengelii,Lloydia, 40: 479.Google Scholar
  134. Hopkins, F.G., 1889, Note on a yellow pigment in butterflies, Nature, 40: 335.CrossRefGoogle Scholar
  135. Horner, W.H., 1967, Streptomycin, in: “Antibiotics”. Vol. II. D. Gottlieb and P.D. Shaw, eds, Springer Verlag, Berlin.Google Scholar
  136. Horowitz, N.H. and Srb, A.M., 1948, Growth inhibition of Neurospora by canavanine and its reversal, J. Biol. Chem., 174: 371.PubMedGoogle Scholar
  137. Horowitz, H.I., Stein, I.M., Cohen, B.D. and White, J.G., 1970, Further studies on the platelet inhibitory effect of guanidinosuccinic acid and its role in uremic bleeding, Amer. J. Med., 49: 336.Google Scholar
  138. Hosotani, M., 1973, Guanidino compounds in brain by automatic liquid chromatography, Okayama Igakkai Zasshi, 85: 373.Google Scholar
  139. Hunter, A., 1928, “Creatine and Creatinine”. Longmans Green,London.Google Scholar
  140. Hurley, K.E. and Williams, R.J., 1955, Urinary amino acids, creatinine and phosphate in muscular dystrophy, Arch. Biochem. and Biophys., 54: 384.Google Scholar
  141. Ikekawa, T., Iwani, F., Hiranaka, H. and Umezawa, H., 1964, Separation of phleomycin components and their properties, J. Antibiotics., 17: 194.Google Scholar
  142. Irreverre, F. and Evans, R.L., 1959, Isolation of y-guanidinobutyric acid from calf brain, J. Biol. Chem., 234: 14–38.Google Scholar
  143. Irreverre, F., Evans, R.L., Hayden, A.R. and Silber, R., 1957, Occurrence of y-guanidinobutyric acid, Nature, 180: 704.PubMedCrossRefGoogle Scholar
  144. Irvin, J.L. and Wilson, D.W., 1939, Studies on octopine.II. The nic_rogenous extractives of squid and octopus muscle, J. Biol. Chem., 127: 565.Google Scholar
  145. Iseki, T., 1931, Uber die basischen Extraktivstoffe des Octopodenmuskels, Z. physiol. Chem., 203: 259.Google Scholar
  146. Ito, K. and Hashimoto, Y., 1965, Occurrence of y- (guanylureido) butyric acid in a red alga, Gymnogongrus flabelliformis, Agr. Biol. Chem., 29: 832.Google Scholar
  147. Ito, K. and Hashimoto, Y., 1966a, Gigartinine: a new amino acid in red algae, Nature, 211: 417.PubMedCrossRefGoogle Scholar
  148. Ito, K. and Hashimoto, Y., 1966b, Distribution of gongrine and gigartinine in marine algae, Nippon Suisan Gakkaishi, 32: 727.CrossRefGoogle Scholar
  149. Ito, K. and Hashimoto, Y., 1969, Syntheses of DL-gigartinine and gongrine, Agr. Biol. Chem. ( Tokyo ), 33: 237.Google Scholar
  150. Ito, K., Miyazawa, K. and Hashimoto, Y., 1967, Occurrence of y-guanidinobutyric acid and concentration of gongrine and gigartinine in a red alga, Gymnogongrus flabelliformis, Nippon SuizanGakkaishi, 33: 572.Google Scholar
  151. Jacoby, G.A. and Gorini, L., 1967, The effect of streptomycin and other aminoglycoside antibiotics on protein synthesis, in: “Antibiotics”, Vol. I, D. Gottlieb and P.D. Shaw, eds., Springer Verlag, Berlin.Google Scholar
  152. Jinnai, D., Sawai, A. and Mori, A., 1966, y-Guanidinobutyric acid as a convulsive substance, Nature, 212: 617.Google Scholar
  153. Jinnai, D., Mori, A., Mukawa, J., Ohkusu, H., Hosotani, M., Mizuno, A. and Tye, L.C., 1969, Biological and physiological studies on guanidino compounds induced convulsions, Jpn. J. Brain Physiol., 106: 36–68.Google Scholar
  154. Kakimoto, Y. and AkazawaA S., 1970, Isolation and identification of NG,NG G ‘G- and N,N- dimethylarginine, N -mono-,di-, and trimethyllysine, and glucosegalactosyl and galactosyl-d hydroxylysine from human urine, J. Biol. Chem., 245: 5751.Google Scholar
  155. Kalckar, H.M., 1941, Nature of energetic coupling in biological synthesis, Chem. Revs, 28: 71.Google Scholar
  156. Kalyankar, G.D., Ikawa, M. and Snell, E.E., 1958, The enzymatic cleavage of canavanine to homoserine and hydroxyguanidine, J. Biol. Chem., 233: 11–75.Google Scholar
  157. Kao, C.Y., 1972, Pharmacology of tetrodotoxin and saxitoxin, Fed. Proc., 31: 11–17.Google Scholar
  158. Karrer, P., Manunta, C. and Schwyzer, R., 1948, Uber ein Vorkommen von Purinen and eines Pterins in einer Ascidienart ( Microcosmus polymorphus ), Heiv. Chim. Acta, 31: 12–14.Google Scholar
  159. Kazlaukas, R., Murphy, P.T., Quinn, R.J. and Wells, R.J., 1977, Aplysinopsin, a new tryptophan derivative from a sponge, Tetrahydron Lett.,p. 61.Google Scholar
  160. Kishi, Y., Goto, T., Hirata, Y., Shimomura, O. and Johnson F.H., 1966a, Cipridina bioluminescence I. Structure of Cipridina luciferin, Tetrehydron Lett., 34–27.Google Scholar
  161. Kishi, Y., Goto, T., Eguchi, S., Hirata, Y., Watanabe, E. and Aoyama, T., 1966b, Cipridina bioluminescence II. Structural studies of Cipridina luciferin by means of high resolution mass spectrometer and an amino acid analyzer, Tetrahydron Lett, 34–37.Google Scholar
  162. Kishi, Y., Goto, T., Inoue, S., Sugiura, S. and Kishimoto, H., 1966c, Cipridina bioluminescence III. Total synthesis of Cipridina luciferin, Tetrahydron Lett., 34–45.Google Scholar
  163. Kishi, Y., Fukuyama, T., Aratani, M., Nakatsubo, F., Goto, T., Inoue, S., Tanino, H. Sugiura, S. and Kakoi, H., 1972, Synthetic studies on tetrodotoxin and related compounds. IV. Stereospecific total synthesis of DL-tetrodotoxin, J. Am. Chem. Soc., 94: 92–19.Google Scholar
  164. Kitagawa, M. and Tomiyana, T., 1929, A new amino-compound in the jack-bean and a corresponding new enzyme, J. Biochem., 11: 265.Google Scholar
  165. Klinger, R., 1921, Beiträge zur pharmakologischen Wirkung der Guanidine, Arch. exp. Pathol. u. Pharmakol., 90: 129.Google Scholar
  166. Koch, W., 1913, Toxic bases in the urine of parathyreodectomized dogs, J. Biol. Chem. 15: 43.Google Scholar
  167. Komoda, Y., Kanedo, S., Yamamoto, M., Ishikawa, M., Itai, A. and Itaka, Y., 1975, Structure of paragracine, a biologically active marine base from Parazoanthus gracilis, Chem. Pharm. Bull., 23: 2464.Google Scholar
  168. Korzybski, T., Kowszyk-Gindifer, Z. and Kurlowicz, W., 1978, “Antibiotics: Origin, Nature and Properties” (translated by E. Paryski), American Soc. for Microbiol., Washington.Google Scholar
  169. Kossel, A., 1910, Uber das Agmatin, Z. physiol. Chem., 66: 257.Google Scholar
  170. Kostir, J.V. and Pristoupil, T.I., 1953, Paper chromatography of urinary glycocyami- dine, Capsopis lekaru ceskych, 92: 188. ( Chem. Abstr., 51: 18234c ).Google Scholar
  171. Krebs, H.A. and Henseleit, K., 1932, Untersuchungen Ober die Harnstoffbildung im Tier-Google Scholar
  172. körper, Z. physiol. Chem., 210: 33.Google Scholar
  173. Krnjevic, K. and Phillis, J.W., 1963, Iontophoretic studies of neurones in the mammalian cerebral cortex, J. Physiol., 165: 274.PubMedGoogle Scholar
  174. Kumagai, T., Kaway, S. and Shikinami, Y., 1928, Uber die Guanidinderivate, welche auf den Blutzucker senkend wirken, Proc. Imp. Acad. ( Japan ), 4: 23.Google Scholar
  175. Kurahashi, K., 1981, Biosynthesis of Peptide Antibiotics, in: “Antibiotics”, Vol. IV. J.W. Corcoran, ed., Springer Verlag, Berlin.Google Scholar
  176. Kutscher, F., 1907, Der Nachweis toxischer Basen im Harn, Z. physiol. Chem., 51: 457. Kutscher, F. and Ackermann, D., 1931, Uber das Arcain, Z. physiol. Chem., 203: 132.Google Scholar
  177. Lacombe, G., Thiem, N.V., Thoai, N.V. and Roche, J., 1964, Biogénèse de l’acide 6-guanidinovalerianique, Compt. Rend. Soc. Biol., 158: 43.Google Scholar
  178. Linneweh, F., 1931a, Uber die Spaltung des Arcains durch Mikroorganismen, Z. Physiol. Chem., 202: 1.Google Scholar
  179. Linneweh, W., 1931b, Uber das pharmakologische Verhalten des Arcains, Z. Biol., 92: 163. Lissitzky, S., Garcia, I. and Roche, J., 1954, Sur les dérivés guanidiques du muscle de scorpion, Androctonus australis, Compt. Rend. Soc. Biol., 148: 436.Google Scholar
  180. Lowenthal, A. and Marescau, B., 1981, Urinary excretion of monosubstituted guanidines in patients affected with urea cycle diseases, in: “Neurogenetics and Neuroophtalmology”, A. Huber and D. Klein, eds., Elsevier/North-Holland Biomedical Press. McLennan, H., 1959, The identification of one active component from brain extracts containing factor I., J. Physiol. (London), 146: 358.Google Scholar
  181. Maeda, K., Okami, Y., Utahara, R. and Umezawa, H., 1953, An antibiotic, phthiomycin, J. Antibiotics, 6: 183.Google Scholar
  182. Major, R.H. and Weber, C.J., 1927, Probable presence of increased amounts of guanidine in blood of patients with arterial hypertension, Bull. Johns Hopkins Hosp., 40: 85.Google Scholar
  183. Makisumi, S., 1961, Guanidino compounds from a Sea-anemone, Anthropleura japonica Verril, J. Biochem., 49, 284.Google Scholar
  184. Marescau, B., 1981, Analytische Studie van Guanidine-Derivaten in Urine van Patienten met Hyperargininemia, Thesis, Universiteit Antwerpen.Google Scholar
  185. Marescau, B., Pintens, J., Lowenthal, A., Esmans, E., Luyten, Y., Lemière, G.,Dommise, R., Alderweireldt, F. and Terheggen, H.G., 1981, Isolation and identification of 2-oxo-5-guanidinovaleric acid in urine of patients with hyperargininemia by chromatography and gas chromatography/mass spectrometry, J. Clin. Chem. Clin. Biochem. 19: 61.Google Scholar
  186. Marescau, B., Lowenthal, A., Terheggen, H.G., Esmans, E. and Alderweireldt, F., 1982, Guanidino compounds in hyperargininemia, in: “Urea Cycle Diseases”, A. Lowenthal, A. Mori and B. Marescau, eds., Plenum Press, New York.Google Scholar
  187. Matsumoto, M. an Mori, A., 1976, Effect of guanidino compounds on rabbit brain microsomal Na+-K ATPase activity, J. Neurochem., 27: 635.PubMedCrossRefGoogle Scholar
  188. Matsumoto, M., Kishikawa, H. and Mori, A., 1976a, Guanidino compounds in the sera of uremic patients and in the sera and brain of experimental uremic rabbits, Biochem. Medicine., 16: 1.Google Scholar
  189. Matsumoto, M., Kobayashi, K., Kishikawa, H. and Mori, A., 1976b, Convulsive activity of methylguanidine in cats and rabbits, IRCS Med. Sci., 4: 65.Google Scholar
  190. Matsumoto, M., Yokoi, I., Takeuchi, H. and Mori, A., 1976c, Effect of guanidino compounds on the electrical activity of giant neurons identified in subesophageal ganglia of the african giant snail, Achatina fulica Férussac, Comp. Biochem. Physiol., 54C: 123.Google Scholar
  191. Matsumoto, M., Fujiwara, M., Mori, A. and Robin, Y., 1977, Effet des dérivés guanidiques sur la cholinestérase et sur l’acétylcholinestérase du cerveau de lapin, Compt. Rend. Soc. Biol., 171: 1226.Google Scholar
  192. Matsumoto, M., Kobayashi, K. and Mori, A., 1979, Distribution of guanidino compounds in bovine brain, J. Neurochem., 32: 645.PubMedCrossRefGoogle Scholar
  193. Mayeda, H., 1936, Uber die Extraktivstoffe aus den Schliessmuskeln von Pecten ( Patinopecten) yessoensis Jay, Acta Schol. Med. Univ. Kyoto., 18: 218.Google Scholar
  194. Meister, A.,1965, “Biochemistry of the Amino Acids”, A. Meister,ed., Acad. Press, New York.Google Scholar
  195. Meister, A. and Wellner, D., 1963, Flavoprotein Amino Acid Oxidases, in: “The Enzymes” P.D. Boyer, H. Lardy and K. Myrbäk,eds., Academic Press, New York., Vol.7.,2d.ed.Google Scholar
  196. Menagé, A. and Morel, G., 1964, Sur la présence d’octopine dans les tissus de crown-Gall, C. R. Acad. Sci. Paris, 259: 47–95.Google Scholar
  197. Menne, F. and Beckmann, R., 1955, Creatine metabolism in children with dystrophia musculorum progressiva Erb., Klin. Wochschr., 33: 556.CrossRefGoogle Scholar
  198. Meyer, K., 1949, Uber herzaktive Krötengifte (Bufogenine). Konstitution des Bufotalins, Helv. Chim. Acta, 32: 1993.Google Scholar
  199. Meyerhof, O., 1928, Uber die Verbreitung der Argininphosphorsäure in der Muskulatur der Wirbellosen, Arch. Sci. biol. Napoli., 12: 536.Google Scholar
  200. Meyerhof, O. and Lohmann, K., 1928, Uber die naturlichen Guanidophosphorsäuren (Phos- phagene) in der quergestreiften Muskulatur, Biochem. Z., 196: 22 and 49.Google Scholar
  201. Miersch, J. and Reinbothe, H., 1966, Chromatographic separation of amino acids and guanidino compounds from fruit-bodies of higher fungi, Flora, 156: 443.Google Scholar
  202. Miyaki, T., Tsukiura, H., Wakae, M. and Kawaguchi, H., 1962, Glebomycin, a new member of the streptomycin class. H. Isolation and physicochemical properties, J. Antibiotics, 15: 15.Google Scholar
  203. Mizuno, A., Mukawa, J., Kobayashi, K. and Mori, A., 1975, Convulsive activity of taurocyamine in cats and rabbits, IRCS Med. Sci., 3: 385.Google Scholar
  204. Monneuse-Doublet, M.O., Lefebure, F. and Olomucki, A., 1980, Isolation and characterization of two molecular forms of octopine dehydrogenase from Pecten maximus L. Eur. J. Biochem., 108: 261.Google Scholar
  205. Moore, E. and Wilson, D.W., 1937, Nitrogenous extractives of scallop muscle. I. The isolation and study of the structure of octopine, J. Biol. Chem., 119: 573.Google Scholar
  206. Moore, R.E., 1977, Toxin from blue-green Algae, Bioscience, 27: 797.CrossRefGoogle Scholar
  207. Morel, G. and Duranton, H., 1958, Le métabolisme de l’arginine par les tissus végétaux, Bull. Soc. Chim. Biol., 40: 2155.Google Scholar
  208. Mori, A., 1980, Natural occurrence and Analyses of Guanidino Compounds, Jpn. J. Clin. Chem., 9: 232. Review (in Japanese).Google Scholar
  209. Mori, A., 1983, Guanidino compounds and neurological disorders, Neurosciences (Kobe) 9: 149. Review (in English).Google Scholar
  210. Mori, A. and Ohkusu, H., 1971, Isolation and identification of alpha-N-acetyl-L-arginine and its effect on convulsive seizure, Adv. Neurol. Sci. ( Tokyo ), 15: 303.Google Scholar
  211. Mori, A., Tanaka, K., Tomita, T., Nakamura, K. and Hayashi, T., 1969, a-N-acetyl-yhydroxy-L-arginine in the human placenta, Biochim. Biophys. Acta, 192: 255.Google Scholar
  212. Mori, A., Hosotani, M. and Tye, L.C., 1974, Studies on brain guanidino compounds by automatic liquid chromatography, Biochem. Med., 10: 8.PubMedCrossRefGoogle Scholar
  213. Mori, A., Hiramatsu, M., Takahashi, K. and Kohsaka, M., 1975, Guanidino compounds in rat organs, Comp. Biochem. Physiol., 51B: 143.Google Scholar
  214. Mori, A., Ichimura, T. and Matsumoto, H., 1978, Gas chromatography-mass spectrometry of guanidino compounds in brain, Anal. Biochem., 89: 393.Google Scholar
  215. Mori, A., Ohkusu, H., Katayama, Y. and Watanabe, Y., 1979, Identification of guanidinosuccinic acid, guanidinoglutaric acid and homoarginine in the brain, Neuroscience Letters, suppl. 2, 14.CrossRefGoogle Scholar
  216. Mori, A., Akagi, M., Katayama, Y. and Watanabe, Y., 1980, a-guanidinoglutaric acid in cobalt-induced epileptogenic cerebral cortex of cats, J. Neurochem., 35: 603.Google Scholar
  217. Mori, A., Katayama, Y., Yokoi, I. and Matsumoto, M., 1981a, Inhibition of taurocyamine (guanidinotaurine)-induced seizures by taurine, in: “The Action of Taurine on Excitable Tissues”, S.W. Schaffer, S.I. Baskin and J.J. Kocsis, eds., Spectrum Publications, New York.Google Scholar
  218. Mori, A., Watanabe, Y., and Fujimoto, N., 1981b, Fluorometrical analysis of guanidino compounds in human cerebrospinal fluid, J. Neurochem., 38: 448.CrossRefGoogle Scholar
  219. Mori, A., Watanabe, Y. and Akagi, M., 1982a, Guanidino compound anomalies in epilepsy, in: “Advances in Epileptology”: XIIIth Epilepsy Symposium, H. Akimoto, H. Kasamatsuri, M. Seino and A. Ward, eds., Raven Press, New York.Google Scholar
  220. Mori, A., Watanabe, Y., Shindo, S., Akagi, M. and Hiramatsu, M., 1982b, a-guanidinoglutaric acid and epilepsy, in: “Urea Cycle Diseases”, A. Lowenthal, A. Mori and B. Marescau, eds., Plenum Press, New York.Google Scholar
  221. Morizawa, K., 1927, The extractive substances in Octopus octopodia, Acta Schol. Med. Univ. Imp. Kyoto, 9: 285.Google Scholar
  222. Mourgue, M. and Dokhan R., 1954, Les dérivés d’oxydation de l’arginine chez les végétaux, Compt. Rend. Soc. Biol., 148: 1434.Google Scholar
  223. Mourgue, M., Baret, R. and Dokhan, R., 1953, Sur la présence de dérivés auanidiques dans les graines de ricin ( Ricinus communis ), Compt. Rend. Soc. Biol. 147: 1449.Google Scholar
  224. Müller, H., 1925, Physiologische und chemische Studien über die Tanretsche Guanidinbase Galegin, Z. Biol., 83: 320.Google Scholar
  225. Murray, M. and Hoffmann, A.B., 1940, The occurrence of guanidine-like substances in the blood in essential epilepsy, J. Lab. Clin. Med., 25: 1072.Google Scholar
  226. Narahashi, T., 1972, Mechanism of action of tetrodotoxin and saxitoxin on excitable membranes, Fed. Proc., 31: 1124.Google Scholar
  227. Natelson, S. and Sherwin, J.E•, 1979, Proposed mechanism for urea nitrogen re-utilization: Relationship between urea and proposed guanidine cycles, Clin. Chem., 25: 1343.Google Scholar
  228. Natelson, S., Stein, I. and Bonas, J.E., 1964, Improvements in the method of separation of guanidino amino acids by column chromatography. Isolation and identification of guanidinosuccinic acid from human urine, Microchem. J., 8: 371.Google Scholar
  229. Needham, A.E., 1970, Nitrogen Metabolism in Annelida, in: “Comparative Biochemistry of Nitrogen Metabolism”, J.W. Campbell,ed., Academic Press, London. Vol.l.Google Scholar
  230. Nichols, J.M., Adams, D.G. and Carr, N.G., 1980, Effect of canavanine and other aminoacid analogues on akinete formation in the cyanobacterium Anabaena cylindrica, Arch. Microbiol., 127: 67.Google Scholar
  231. Noda, T., Take, T., Negate., A., Wakamiya, T. and Shiba, T., 1972, Chemical studies on tuberactinomycin. III. The chemical structure of viomycine (tuberactinomycine 8), J. Antibiotics, 25: 427.CrossRefGoogle Scholar
  232. Noguchi, T. and Hashimoto, Y., 1973, Marine toxins. XXXVIII. Isolation of tetrodotoxin from a goby Gobius criniger, Toxicon, 11: 305.Google Scholar
  233. Noguchi, T., Konosu, S. and Hashimoto, Y., 1969, Identity of the crab toxin with saxitoxin, Toxicon, 7: 325.PubMedCrossRefGoogle Scholar
  234. Obata, Y. and Iimori, M., 1952, Octopine biosynthesis by Saccharomyces cerevisiae, J. Chem. Soc. Jpn., 73: 832.Google Scholar
  235. Oesper, P., 1950, Sources of the high energy content in energy-rich phosphates, Arch. Biochem., 27, 255.Google Scholar
  236. Ohkusu, H. and Mori, A., 1969, Isolation of a-N-acetyl-L-arginine from cattle brain, J. Neurochem., 16: 1485.PubMedCrossRefGoogle Scholar
  237. Ohtaka, Y. and Uchida, K., 1959, Studies on the constituents of sake. Part VII. Identification of acetylagmatine (a new substance) and ethanolamine, J. Agr. Chem. Soc. Japan, 33: 679.Google Scholar
  238. Okanishi, M., Koshiyama, H., Ohmori, T. and Kawaguchi, H., 1962, Glebomycin, a new member of the streptomycin class. I. Biological studies, J. Antibiotics, 15: 7.Google Scholar
  239. Oriol-Audit, C., 1978, Polyamine-induced actin polymerization, Eur. J. Biochem., 87: 371.Google Scholar
  240. Otten, L.A.B.M., 1979, Lysopine dehydrogenase and nopaline dehydrogenase from crown gall tumor tissues, Thesis dissert. University Leiden.Google Scholar
  241. Paik, W.K. and Kim, S., 1975, Protein methylation: chemical, enzymological and biological significance, Adv.Enzymol., 42: 227.PubMedGoogle Scholar
  242. Palmer, H.D., McNairScott, D.B. and Elliott, K.A.C., 1943, A note on the blood guanidine level in migraine subjects, J. Lab. Clin. Med., 28: 735.Google Scholar
  243. Patthy, A., Bajusz, S. and Patthy, L., 1977, Preparation and Characterization of NG-Mono-, Di-and Trimethylated Arginines, Acta Biochim.and Biophys.Acad. Sci. Hung., 12: 191.Google Scholar
  244. Pauling, L., 1960, “The Nature of the Chemical Bound”, Cornell University Press, Ithaca.Google Scholar
  245. Pavelka, L.A., Kim, Y.H. and Mosher, H.S., 1977,. Tetrodotoxin and Tetrodotoxin-like compounds from the eggs of the Costa Rican frog, Atelopus chiriquiensis, Toxicon, 15: 135.CrossRefGoogle Scholar
  246. Pearce, C.L. and Rinehart, K.L. Jr., 1981, Biosynthesis of Aminocyclitol Antibiotics, in: “Antibiotics”, Vol. IV, J.W. Corcoran ed., Springer Verlag, Berlin.Google Scholar
  247. Perez, G., Rey, A. and Schiff, E., 1976, The biosynthesis of guanidinosuccinic acid by perfused rat liver, J. Clin. Invest., 57: 807.PubMedCrossRefGoogle Scholar
  248. Petit, A. and Morel, G., 1966, Le métabolisme de l’homoarginine par les tissus de crown-gall, Compt. Rend. Soc. Biol., 160: 1806.Google Scholar
  249. Petit, Al and Tempé, J., 1978, Isolation of Aerobacterium Ti-plasmid regulatory mutants, Mol. aen. Genet., 167, 147.Google Scholar
  250. Petit, A., Tempé, J. and Morel, G., 1968, Sur la présence d’un produit de transformation de la canavanine dans les tissus tumoraux de Canavalia ensiformis, Compt. Rend. Soc. Biol., 162: 632.Google Scholar
  251. Petit, A.,Delhaye, S., Tempé, J. and Morel, G., 1970, Recherches sur les guanidines des tissus de crown-gall. Mise en évidence d’une relation biochimique spécifique entre les souches d’Aorobacterium tumefaciens et les tumeurs qu’elles induisent, Physiol. Vég., 8: 205.Google Scholar
  252. Pettenkofer, M., 1844, Vorläufige Notiz über einen neuen stickstoffhaltingen Körper im Harne, Liebigs Ann. d. Chem., 52: 97.Google Scholar
  253. Pisano, J.J., Abraham, D. and Udenfriend, S., 1963, Biosynthesis and disposition of y.guanidinobutyric acid in mammalian tissues, Arch. Biochem. Biophys., 100: 323.Google Scholar
  254. Prota, G., 1980, Nitrogenous Pigments in Marine Invertebrates, in: “Marine NaturalGoogle Scholar
  255. Products“, P.J. Scheuer ed., Academic Press, New York.Vol.3.Google Scholar
  256. Pufahl, K. and Schreiber, K., 1961, Isolation of a new guanidine derivative from goat’s rue, Galega officinalis, Experientia, 17: 302.Google Scholar
  257. Quadrifoglio, F., Crescenzi, V., Prota, G., Cariello, L., Di Marco, A. and Zunino, F., 1975, Interaction of natural tetra-azacyclopentazulene dyes with DNA and their effects on the DNA and RNA polymerase reactions, Chem. Biol. Interact., 11 91.Google Scholar
  258. Quastel, J.H. and Witty, R., 1951, Ornithine transaminase, Nature 167: 556.PubMedCrossRefGoogle Scholar
  259. Rao, S.L.N., Ramachandran, L.K. and Adige, P.R., 1963, The isolatic:u a,.. characteriza- tion of L-homoarginine from seeds of Lathyrus sativus, Biochemistry, 2: 298.PubMedCrossRefGoogle Scholar
  260. Ratner, S., Petrak, B. and Rochovanski, O., 1953, Biosynthesis of urea. V. Isolation and properties of argininosuccinic acid, J. Biol. Chem., 204, 95.Google Scholar
  261. Reed, J.K. and Trzos, W., 1979, Interaction of substituted guanidines with the tetrodo- toxin-binding component in Electrophorus electricus, Arch. Biochem. Biophys., 195: 414.Google Scholar
  262. Regnouf, F. and Thoai, N.V., 1970, Octopine and lactate dehydrogenases in mollusc muscles, Comp. Biochem. Physiol., 32: 411.Google Scholar
  263. Reinbothe, H., 1963, Urea metabolism in Basidiomycetes. II. Formation of y-guanidobutyric acid in fruit bodies of Lycoperdon, Phytochemistry, 13: 327.Google Scholar
  264. Reinbothe, H. and Mothes, K., 1962, Urea, ureides and guanidines in plants, Ann. Rev. Plant Physiol., 13: 129.Google Scholar
  265. Reiter, A.J. and Horner, W.H., 1979, Studies on the metabolism of guanidino compounds in mammals. Formation of guanidine and hydroxyguanidine in the rat, Arch. Biochim. Biophys., 197: 126.Google Scholar
  266. Reuter, G. Von, 1964, Zur Biochemie und Physiologie von Galegin in Galega officinalis L. Flora, 154: 136.Google Scholar
  267. Ritchie, J.M., 1980, Tetrodotoxin and saxitoxin and the sodium channels of excitable tissues, Trends Pharmacol. Sci., 1: 275.Google Scholar
  268. Rivett, R.W. and Peterson, W.H., 1947, Streptolin, a new antibiotic from a species of Streptomyces, J. Am. Chem. Soc., 69: 3006.Google Scholar
  269. Robin, Y., 1954, Répartition et métabolisme des guanidines monosubstituées d’origine animale, Thèse de Doctorat ès Sciences Naturelles, Paris.Google Scholar
  270. Robin, Y., 1964a, Biological distribution of guanidines and phosphagens in marine annelida and related phyla from California, with a note on pluriphosphagens, Comp. Biochem. Physiol., 12: 347.Google Scholar
  271. Robin, Y., 1964b, Présence de l’acide ß-guanidoisobutyrique libre et combiné chez des vers marins, Biochim. Biophys. Acta, 93: 206.Google Scholar
  272. Robin, Y., 1974, Phosphagens and molecular evolution in worms, Biosystems, 6: 49. Robin, Y., 1980, Les phosphagènes des animaux marins, in“ Actualités de Biochimie Marine”, Vol. 2, Y. Le Gal, ed., Centre Natl. Rech. Sci., Paris.Google Scholar
  273. Robin, Y., 1982, Metabolism of arginine in invertebrates: relation to urea cycle and to other guanidine derivatives, in: “Urea Cycle Diseases”, A. Lowenthal, A. Mori and B. Marescau, eds., Plenum Press., New York.Google Scholar
  274. Robin, Y. and Audit, C., 1966, Biogénèse des dérivés guanidiques chez Audouinia tentaculata Mtg, Compt. Rend. Soc. Biol., 160: 1410.Google Scholar
  275. Robin, Y. and Guillou, Y., 1980, Contribution à l’étude des dérivés guanidiques de deux cnidaires, Actinia equina et A. fragacea, et de la bonellidine de l’échiurien Bonellia viridis, “Oceanic”, 5 ( Fasc. Hors Série ): 575.Google Scholar
  276. Robin, Y.and Roche, J., 1954, Sur la présence de taurocyamine (guanidotaurine) chez des Coelentérés et des Spongiaires, Compt. Rend. Soc. Biol., 148: 1783.Google Scholar
  277. Robin, Y. and Roche, J., 1965, Répartition biologique des guanidines substituées chez des vers terrestres et d’eau douce (oligochètes, Hirudinées, Turbéllariées) récoltés en Hongrie, Comp. Biochem. Physiol., 14: 453.Google Scholar
  278. Robin, Y. and Thoai, N.V., 1957, Métabolisme oxydatif de la L-arginine chez la limnée, Limnaea stagnalis L. I. Oxydation par la L-aminoacideoxydase, Compt. Rend. Soc. Biol., 151: 2093.Google Scholar
  279. Robin, Y. and Thoai, N.V., 1961a, Structure et synthèse de l’hirudonine (diamidinospermidine ou N- (3-guanidopropyl)-4-aminobutylguanidine), C. R. Acad. Sci. Paris, 252: 1224.Google Scholar
  280. Robin, Y. and Thoai, N.V., 1961b, Métabolisme des dérivés guanidylés. X. Métabolisme de l’octopine: son rôle biologique, Biochim. Biophys. Acta, 52: 233.Google Scholar
  281. Robin, Y. and Thoai, N.V., 1962, Sur une nouvelle guanidine monosubstituée biologique, l’hypotaurocyamine (acide 2-guanidoéthanesulfinique) et le phosphagène correspondant, Biochim. Biophys. Acta, 63: 481.Google Scholar
  282. Robin, Y. and Viala, B., 1966, Sur la présence d’ATP: arginine phosphotransferase chez Tetrahymenapyriformis W. Cambridge, Comp. Biochem. Physiol., 18: 405.PubMedCrossRefGoogle Scholar
  283. Robin, Y., Thoai, N.V. and Roche, J., 1957a, Sur la présence d’arcaîne chez la Sangsue, Hirudo medicinalis L., Compt. Rend. Soc. Biol., 151: 2015.Google Scholar
  284. Robin, Y., Thoai, N.V. and Pradel, L.A., 1957b, Métabolisme des dérivés guanidylés. VII. Sur une nouvelle guanidine monosubstituée biologique: l’hirudonine, Biochim. Biophys. Acta, 24: 381.Google Scholar
  285. Robin, Y., Audit, C. and Landon, M., 1967, Biogénèse des dérivés diguanidiques chez la sangsue, Hirudo medicinalis L. II. Mécanisme de la double transamidination, Compar. Biochem. Physiol., 22: 287.Google Scholar
  286. Roche, J., Thoai, N.V., Robin, Y., Garcia, I. and Hatt, J.L., 1952a, Sur la nature et la répartition des guanidines monosubstituées dans les tissus des Invertébrés. I. Présence de dérivés métaboliques de l’arginine chez des Mollusques, des Crustacés et des Echinodermes, Compt. Rend. Soc. Biol., 146: 1899.Google Scholar
  287. Roche, J., Thoai, N.V. and Glahn, P.E., 1952b, Sur la L-aminoacideoxydase de nombreux Invertébrés marins, Experientia, 8: 428.PubMedCrossRefGoogle Scholar
  288. Roche, J., Thoai, N.V. and Robin, Y., 1957, Sur la présence de créatine chez les Invertébrés et sa signification biologique, Biochim. Biophys. Acta, 24: 514.Google Scholar
  289. Roche, J., Audit, C. and Robin, Y., 1965, Isolement et identification d’un nouveau dérivé diguanidique biologique, l’audouine (1,5-diamidinocadavérine) et de l’arcaindl,4-diamidinoputrescine), chez une Annélide Polychète marine, Audouinia tentaculata Montagu, Compt. Rend. Acad. Sci., Paris, 260: 7023.Google Scholar
  290. Rosenberg, H., 1959, Occurrence of guanidinoacetic acid and other substituted guanidines in mammalian liver, Biochem. J., 72: 582.Google Scholar
  291. Rossiter, R.J., Gaffney, T.J., Rosenberg, H. and Ennor, A.H., 1960, The formation in vivo of lombricine in the earthworm (Megascolides cameroni), Biochem. J.,76:603. Russel, F.E., 1967, Comparative pharmacology of some animal toxins, Fed. Proc., 26: 1206.Google Scholar
  292. Ryan, W.L. and Wells, I.C., 1964, Homocitrulline and homoarginine synthesis from lysine, Science, 144: 1122.PubMedCrossRefGoogle Scholar
  293. Sakiyama, T., Suzuki, T., Owada, M. and Kitagawa, T., 1982, First case of argininosuccinic aciduria in Japan: clinical observations and treatment, in: “Urea Cycle Diseases”, A. Lowenthal, A. Mori and B. Marescau,eds., Plenum Press, New York.Google Scholar
  294. Schäfer, G., 1980, Guanidines and biguanides, Pharmac. Ther., 8: 275.Google Scholar
  295. Schantz, E.J., Mold, J.D., Stanger, D.W., Shavel, J., Riel, F.J., Bowden, J.P., Lynch, J.M., Wyler, R.S., Riegel, B. and Sommer, H., 1957, Paralytic shellfish poison. VI. Isolation and purification of the poison from toxic clam and mussel tissue, J. Am. Chem. Soc., 79: 5230.Google Scholar
  296. Schantz, E.J., Lynch, J.M., Vayvada, G., Matsumoto, K. and Rapoport, H., 1966, The purification and characterization of the poison produced by Gonyaulax catanella in axenic culture, Biochemistry, 5: 1191.Google Scholar
  297. Schatz, A., Bugie, E. and Waksman, S., 1944, Streptomycin, a substance exhibiting antibiotic activity against gram-positive and gram-negative bacteria, Proc. Soc. Exptl. Biol. Med., 55: 66.Google Scholar
  298. Scheuer, P.J., 1973, “Chemistry of Marine Natural Products”, Acad. Press, New York.Google Scholar
  299. Scheuer, P.J., 1975, Recent Developments in Chemistry of the Marine Toxins, Lloydia, 38: 1.PubMedGoogle Scholar
  300. Scheuer, P.J., 1977, Marine Toxins, Acc. Chem. Res., 10: 33.Google Scholar
  301. Scheumack, D., Howden, M.E.H., Spence, I. and Quinn, R.J., 1978, Maculotoxin: a neurotoxin from the venom glands of the Octopus Hapalochlaena maculosa identified as tetrodotoxin, Science, 199: 188.CrossRefGoogle Scholar
  302. Schlessinger, D. and Medoff, G., 1975, Streptomycin, Dihydrostreptomycin and the Gentamycins, in: “Antibiotics”, Vol. III, J.W. Corcoran and F.E. Hahn, eds., Springer Verlag, Berlin.Google Scholar
  303. Schöpf, C., 1964, Die Anfänge der Pteridine-Chemie, in: “Pteridine Chemistry”, W. Pfleiderer and E.C. Taylor, eds., The McMillan Co, New York.Google Scholar
  304. Schotte, H. and Prieve, H., 1926, Synthese des N-Methyl-N-(8-guanidino-äthyl)guanidins ( Kutscher’s Vitiatine ), Z. physiol. Chem„ 153: 67.Google Scholar
  305. Schulze, E., 1891, Uber basische Stickstoffverbindungen aus der Samen von Vicia sativa und Pisum sativum, Z. physiol. Chem., 15: 140.Google Scholar
  306. Schulze, E. and Steiger, E., 1887, Uber das Arginin, Z. physiol. Chem., 11: 43. Schwartz, J.H. and Maas, W.K., 1960, Analysis of the inhibition of growth produced by canavanine in Escherichia coli, J. Bacteriol., 79: 794.Google Scholar
  307. Scott-Emuakpor, A., Higgins, J.V. and Kohrman, A.F., 1972, Citrullinemia: a new case, with implications concerning adaptation to defective urea synthesis, Pediatric Research, 6: 626.PubMedGoogle Scholar
  308. Seki, Y., Nakamura, T. and Okami, Y., 1970, Accumulation of 2-aminoimidazole by Streptomyces eurocidicus, J. Biochem., 67: 389.PubMedGoogle Scholar
  309. Shaikin, R., Giatt, Y. and Berlyne, G., 1975, The presence and toxicity of guanidinopropionic acid in uremia, Kidney Internat., 7: 302.Google Scholar
  310. Sharma, G.M. and Burkholder, P.R., 1971, Structure of dibromophakellin, a new bromine-containing alkaloid from the marine sponge Phakellia flabellata, J. Chem. Soc. Chem. Commun., p. 151.Google Scholar
  311. Sharma, G.M. and Magdoff-Fairchild, B., 1977, Natural products of marine sponges. 7. The constitution of weakly basic guanidine compounds, dibromophakellin and monobromophakellin, J. Orq. Chem., 42: 4118.Google Scholar
  312. Sharma, G.M., Vig, B. and Burkholder, P.R., 1970, Antimicrobial substances of sponges. IV. Structure of a bromine-containing compound of a marine sponge, Proc. Conf. Food - Drugs from the Sea, p. 307. Marine Technology Society, Washington, D.C.Google Scholar
  313. Shimizu, Y., 1978, Dinoflagellate Toxins, in: “Marine Natural Products”, P.J. Scheuer, ed., Acad. Press, New York, Vol. 1.Google Scholar
  314. Shimomura, O., Goto, T. and Hirata, Y., 1957, Crystalline Cypridina luciferin, Bull. Chem. Soc. Jpn., 30: 929.CrossRefGoogle Scholar
  315. Shindo, S. and Mori, A., 1980, Biosynthesis of taurocvamine by mouse kidney transamidinase, IRCS Med. Sci., 8: 91.Google Scholar
  316. Smith, T.A. and Richards, F.J., 1962, The biosynthesis of putrescine in higher plants and its relation to potassium nutrition, Biochem. J., 84: 292.Google Scholar
  317. Späth, E. and Prokopp, S., 1924, Uter das Galegin, Ber., 57 474.Google Scholar
  318. Stafford, J.R. and Fann, W.E., 1977, Drug interactions with guanidinium hypertensives, Drugs, 13: 57.PubMedCrossRefGoogle Scholar
  319. Stein, I.M., Cohen, S.D. and Kornhauser, R.S., 1969, Guanidinosuccinic acid in renal failure, experimental azotemia and inborn errors of the urea cycle, New Engl. J. Med., 280 926.Google Scholar
  320. Stein, I.M. and Micklus, M.J., 1973, Concentrations in serum and urinary excretion of guanidine, 1-methylguanidine, and 1,1-dimethylguanidine in chronic renal failure, Clin. Chem., 19: 583.Google Scholar
  321. Stempien, M.F. (Jr.), Nigrelli, R.F. and Chib, J.S., 1972, Isolation and synthesis of physiologically active substances from sponges of the genus Agelas, 164 th ACS Meeting, Abstracts, MEDI 21.Google Scholar
  322. Storey, K.B., 1976, Purification and properties of adductor muscle phosphofructokinase from the oyster, Crassostrea virginica. The aerobic/anaerobic transition: role of arginine phosphate in enzyme control, Eur. J. Biochem., 70: 331.Google Scholar
  323. Strecker, A., 1861, Etude sur la guanine, Compt. Rend. Acad. Sci., Paris, 52: 1210. Stumpf, P.K. and Green, D.E., 1944, L-amino acid oxidase of Proteus vulgaris, J. Biol. Chem., 153: 387.Google Scholar
  324. Subrahmanyan, P., Bhaskaran, K. and Satyanand, D., 1962, Phosphate and creatinine excretion in schizophrenics, Indian J. P ychiatr., 4: 17.Google Scholar
  325. Sullivan, M.X., 1911, The origin of creatinine in soils, J. Am. Chem. Soc., 33: 2035. Suwaki, S., 1978, Experimental model of hyperargininemia. II. Identification of guani dinosuccinic acid in urine of the arginine loaded rabbit and a possible pathway of its formation, Okayama Igakkai Zasshi, 90: 1393.Google Scholar
  326. Suzuki, T. and Muraoka, S., 1954, New guanidyl derivatives and amino acids in the extracts of Shellfish Cristaria plicata Leach, J. Pharm. Soc. Japan., 74: 171.Google Scholar
  327. Takasawa, S., Kawamoto, I., Okachi, R., Kohakura, M., Yahashi, R. and Nara, T., 1975a, A new antibiotic victomycin (XK 49–1-B-2). II. Isolation, purification and physicochemical and biological properties, J. Antibiotics, 28: 366.CrossRefGoogle Scholar
  328. Takasawa, S., Kawamoto, I., Takahashi, I., Kohakura, M., Okachi, R., Sato, S., Yamamoto, M., Sato, T. and Nara, T., 1975b, Platomycins A and B. I. Taxonomy of the producting strain and production, isolation and biological properties of platomycins, J. Antibiotics, 28: 656.Google Scholar
  329. Takeuchi, A. and Takeuchi, N., 1975a, The structure -activity relationship for GABA and related compounds in the crayfish muscle, Neuropharmacology, 14: 627.PubMedCrossRefGoogle Scholar
  330. Takeuchi, A. and Takeuchi, N., 1975b, Permeability changes of the crayfish muscle produced by beta-guanidinopropionic acid and related substances, Neuropharmacology, 14: 635.PubMedCrossRefGoogle Scholar
  331. Takita, T., Muraoka, Y., Fujii, A., Itoh, H., Maeda, K. and Umezawa, H., 1972, The structure of the sulfur-containing chromophore of phleomycin and chemical transformation of phleomycin to bleomycin, J. Antibiotics, 25: 197.CrossRefGoogle Scholar
  332. Takita, T., Muraoka, Y., Nakatani, T., Fujii, A., Umezawa, Y., Naganawa, H. and UmeZawa, H., 1978, Chemistry of bleomycin. XIX. Revised structures of bleomycin and phleomycin, J. Antibiotics, 31: 801.CrossRefGoogle Scholar
  333. Tanaka, N., 1975, Aminoglycoside Antibiotics. in: “Antibiotics”, Vol. III, J.W. Corcoran and F.E. Hahn, eds., Springer Verlag, Berlin.Google Scholar
  334. Tanino, H., Inoue, S., Aratani, M. and Kishi, Y., 1974, Synthetic studies on tetrodotoxin and related compounds. V. The protecting group of the C9-hydroxy group, Tetrahydron Lett., p. 335.Google Scholar
  335. Tanino, H., Nakata, T., Kaneko, T. and Kishi, Y., 1977, A stereospecific total synthesis of d,l-saxitoxin, J. Am. Chem. Soc., 99: 2818.Google Scholar
  336. Tanret, G., 1914, Sur un alcaloide retiré de Galega officinalis, Bull. Soc. Chim., 15: 613.Google Scholar
  337. Tawara, Y., 1909, Study on a toxic compound of Tetrodontidae, Yakugaku Zasshi, 29: 587. Taylor, K.M., Baird-Lambert, J.A., Davis, P.A. and Spence, I., 1981, Methylaplysinopsin and other marine natural products affecting neurotransmission, Fed. Proc., Fed. Am. Soc. Exp. Biol., 40: 15.Google Scholar
  338. Tempé, J., 1982, Chemistry and Biochemistry of Open Chain Imino Acids, in: “Chemistry of Amino Acids, Peptides and Proteins”, B. Weinstein,ed., M. Dekker, New York.Vol.7. Tempé, J. and Goldmann, A., 1982, Occurrence and biosynthesis of opines in: “Molecular Biology of Plant Tumors”, G. Kahl and J.S. Shell eds., Academic Press.,New York. Tepfer, D.A. and Tempé, J„ 1981, Production d’agropine par des racines formées sous l’action d’Agrobacterium rhizogenes, souche A4, Compt. Rend. Acad. Sci., Paris, 292: 153.Google Scholar
  339. Terheggen, H.G., Lavinha,F.r Colombo, J.P., Van Sande, M. and Lowenthal, A., 1972, Familial hyperargininaemia, J. Génét. Hum., 20: 69.Google Scholar
  340. Terheggen, H.G., Lowenthal, A., Lavinha, F. and Colombo, J.P., 1975, Familial hyperargininaemia, Arch. Disease in Childhood, 50: 57.CrossRefGoogle Scholar
  341. Thoai, N.V., 1965, Nitrogenous bases. in: “Comprehensive Biochemistry”, M. Florkin and E.H. Stotz,eds., Elsevier Publishing Co, Amsterdam, London, New York. Vol. 6. Thoai, N.V. and Desvages, G., 1963, Sur la nouvelle guanidine biologique végétale, la 4-hydroxy-galegine, Bull. Soc, Chim. Biol., 45: 413.Google Scholar
  342. Thoai, N.V. and Lacombe, G., 1958, Sur la présence de l’acide 6-guanido-n-valérianique dans les urines humaines, B’..’u B. 29 437Google Scholar
  343. Thoai, N.V. and Olomucki, A., 1962, Arglnine.ecar.oxy-oxydase i. Caractères et nature de l’enzyme, Biochim. Biophys. Acta, 59: 533.Google Scholar
  344. Thoai, N.V. and Robin, Y., 1954a, Métabolisme des dérivés guanidylés.II. Isolement de la guanidotaurine (taurocyamine) et de l’acide guanidoacétique (glycocyamine) des vers marins, Biochim. Biophys. Acta., 13: 533.Google Scholar
  345. Thoai, N.V. and Robin, Y., 1954b, Métabolisme des dérivés guanidylés.IV. Sur une nouvelle guanidine monosubstituée biologique: l’ester guanidoéthylsérylphosphorique (lombricine) et le phosphagène correspondant, Biochim. Biophys. Acta, 14: 76.Google Scholar
  346. Thoai, N.V., and Robin, Y., 1959a, Métabolisme des dérivés guanidylés. VIII. Biosynthèse de l’octopine et répartition de l’enzyme l’opérant chez les Invertébrés, Biochim. Biophys. Acta, 35: 446.Google Scholar
  347. Thoai, N.V. and Robin, Y., 1959b, Sur la biogénèse de l’octopine dans différents tissus de Pecten maximus L., Bull. Soc. Chim. Biol., 41: 735.Google Scholar
  348. Thoai, N.V. and Robin, Y., 1961, Métabolisme des dérivés guanidylés. IX. Biosynthèse de l’octopine: étude du mécanisme de la réaction et de quelques propriétés de l’octopine synthetase, Biochim. Biophys. Acta, 52: 221.Google Scholar
  349. Thoai, N.V. and Robin, Y., 1969, Guanidine compounds and phosphagens, in: “Chemical Zoology” IV. Annelida, Echiura and Sipuncula., M. Florkin and B.T. Scheer eds., Acad. Press., New York.Google Scholar
  350. Thoai, N.V. and Roche, J., 1960, Dérivés guanidiques biologiques, Fortschr. Chem. org. Naturstoffe, 18: 83.Google Scholar
  351. Thoai, N.V. and Roche, J., 1964, Diversity of phosphagens., in: “Taxonomic Biochemistry and Serology”, Ch. A. Leone,ed., The Ronald Press, New York.Google Scholar
  352. Thoai, N.V., Roche, J. and Robin, Y., 1953a, Métabolisme des dérivés guanidylés. I. Dégradation de l’arginine chez les Invertébrés marins, Biochim. Biophys. Acta, 11: 403.Google Scholar
  353. Thoai, N.V., Roche, J., Robin, Y. and Thiem, N.V., 1953b, Sur la présence de la glyco cyamine (acide guanidylacétique), de la taurocyamine (guanidyltaurine) et des phosphagènes correspondants dans les muscles de vers marins, Biochim. Biophys. Acta, 11: 593.Google Scholar
  354. Thoai, N.V., Roche, J. and Olomucki, A., 1954, Sur la présence de la taurocyamine (guanidotaurine) dans l’urine de rat et sa signification biochimique dans l’excrétion azotée, Biochim. Biophys. Acta, 14: 448.Google Scholar
  355. Thoai, N.V., Hatt, J.L. and An, T.T., 1956a, Métabolisme des dérivés guanidylés. V. Oxydation enzymatique de l’arginine en guanidobutyramide, Biochim. Biophys. Acta, 22: 116.CrossRefGoogle Scholar
  356. Thoai, N.V., Hatt, J.L., An, T.T. and Roche, J., 1956b, Metabolism of guanidyl deriva tives. VI. Degradation of derivatives of guanidine in Streptomyces griseus, Biochim. Biophys. Acta, 22: 337.PubMedCrossRefGoogle Scholar
  357. Thoai, N.V., Olomucki, A., Robin,Y., Pradel, L.A. and Roche, J., 1956c, Sur la présence de nombreux dérivés carbamylés et guanidiques dans les urines et sur leur signification biologique, Compt. Rend. Soc. Biol., 150: 2160.Google Scholar
  358. Thoai, N.V., Robin, Y. and Pradel, L.A., 1957, Métabolisme oxydatif de la L-arginine chez la Limnée, Limnaea stagnalis L. H. Oxydation en guanidobutyramide, Compt. Rend. Soc. Biol., 151: 2097.Google Scholar
  359. Thoai, N.V., Di Jeso, F. and Robin, Y., 1963a, Sur l’isolement et la synthèse d’une nouvelle guanidine monosubstituée biologique, l’acide guanidoéthyl-méthyl-phosphorique et sur le phosphagène correspondant, l’acide N’-phosphoryl-guanidoéthylméthyl-phosphorique, Compt. Rend. Acad. Sci., Paris, 256: 4525.Google Scholar
  360. Thoai, N.V., Zappacosta, S. and Robin, Y., 1963b, Biogénèse de deux guanidines soufrées: la taurocyamine et l’hypotaurocyamine, Comp. Biochem. Physiol., 10: 209.Google Scholar
  361. Thoai, N.V., Di Jeso, F., Robin, Y. and Der Terrossian, E., 1966, Sur la nouvelle acide adénosine 5’-triphosphorique:guanidine phosphotransférase, l’ophéline kinase, Biochim. Biophys. Acta, 113: 542.Google Scholar
  362. Thoai, N.V., Regnouf, F. and Olomucki, A., 1967, Isolement d’un peptide phosphorylé et guanidique,l’aspartyllombricine, des muscles de Bonellia viridis, Bull. Soc. Chim. Biol., 49: 805.Google Scholar
  363. Thoai, N.V., Robin, Y. and Guillou, Y., 1972, A new phosphagen, N’-phosphorylguanidino- ethylphospho- O - (a-N,N-dimethyl)serine (phosphothalassemine), 11: 3890.Google Scholar
  364. Touitou, Y. and Perlemuter, L., 1976, “ Dictionnaire Pratique de Pharmacologie Clinique”, Masson, Paris.Google Scholar
  365. Tsuda, K. and Kawamura, M., 1952, The constituents of the ovaries of globfish. VII. Purification of tetrodotoxin by chromatography, J. Pharm. Soc. Japan, 72: 711.Google Scholar
  366. Umezawa, H., 1971, Natural and artificial bleomycins. Chemistry and antitumor activity, Pure Appl. Chem., 28: 665.Google Scholar
  367. Umezawa, H., 1975, Bleomycin, in “Antibiotics”, Vol. III, J.W. Corcoran and F.E. Hahn, eds., Springer Verlag, Berlin.Google Scholar
  368. Umezawa, H., 1980, Recent progress in bleomycin studies, Med. Chem. (Academic),16, 147. Umezawa, H., Suhara, Y., Takita, T. and Maeda, K., 1966, Purification of bleomycins, J. Antibiotics, 19A: 210.Google Scholar
  369. Van Pilsum, J.F., Martin, R.P., Kito, E. and Hess, J., 1956, Determination of creatine, creatinine, arginine, guanidinoacetic acid, guanidine and methylguanidine in biological fluids, J. Biol. Chem., 222 225.Google Scholar
  370. Van Pilsum, J.F., Stephens, G.C. and Taylor, D., 1972, Distribution of creatine, guanidinoacetate and the enzymes for their biosynthesis in the animal Kingdom. Implications for phylogeny, Biochem. J., 126: 325.Google Scholar
  371. Van Tamelen, E.E., Dyer, J.R., Whaley, H.A., Carter, H.E. and Whitfield, G.B. Jr., 1961, Constitution of the streptoli,n-streptothricingroup of Streptomyces antibiotics, J. Am. Chem. Soc., 83: 4295.Google Scholar
  372. Volcani, B.E. and Snell, E.E., 1948, The effects of canavanine, arginine and related compounds on the growth of bacteria, J. Biol. Chem., 174: 893.Google Scholar
  373. Waksman, S.A. and Woodruff, J.B., 1942, Streptothricin, a new selective bacteriostatic and bactericidal agent particularly against gram-negative bacteria, Proc. Soc. Exptl. Biol. Med., 49: 207.Google Scholar
  374. Walker, J.B., 1952, Argininosuccinic acid from Chlorella, Proc. Natl. Acad. Sci. U.S., 38: 561.Google Scholar
  375. Walker, J.B., 1953, An enzymatic reaction between canavanine and fumarate, J. Biol. Chem., 204: 139.Google Scholar
  376. Walker, J.B., 1955, Canavanine and homoarginine as antimetabolites of arginine and lysine in yeast and algae, J. Biol. Chem., 212: 207.Google Scholar
  377. Walker, J.B. and Myers,J., 1953, The formation of argininosuccinic acid from arginine and fumarate, J. Biol. Chem., 203: 143.Google Scholar
  378. Watanabe,C.K.,1918,Studies on the metabolic changes induced by administration of guanidine bases. I. The influence of injected guanidine hydrochloride upon blood sugar content, J. Biol. Chem., 33: 253.Google Scholar
  379. Watanabe, Y., Ohara, S., Shindo, S. and Mori, A., 1983, Effects of a-keto-6-guanidinovaleric acid on cAMP and cGMP contents in mouse brain, Neurosciences (Kobe), 9: 42.Google Scholar
  380. Watts, R.L. and Watts, D.C., 1968, Gene duplication and the evolution of enzymes, Nature, 217: 1125.PubMedCrossRefGoogle Scholar
  381. Weber, C.J., 1935, The presence of glycocyamine in urine, J. Biol. Chem., 109, xcvl Proc.Google Scholar
  382. Wesselow, de, O.L.V.S. and Griffiths W.J., 1932, Blood guanidine in hypertension, Brit. J. Exper. Path., 13: 345.Google Scholar
  383. Wiechert, P., Mortelmans, J., Lavinha, F., Clara, R., Terheggen, H.G. and Lowenthal, A., 1976, Excretion of guanidino derivatives in urine of hyperargininemic patients, J. Génét. hum., 24: 61.PubMedGoogle Scholar
  384. Wieland, H. and Alles, R., 1922, Ober der Giftstoff der Kröte, Ber., 55: 1789.Google Scholar
  385. Wieland, H., Hesse, G. and Mittel, R., 1936, Toad poisons. IX. Further consideration of constitutional problems, Ann., 524: 203.Google Scholar
  386. Zammit, V.A. and Newsholme, E.A., 1976, The maximum activities of enzymes of carbohydrate utilization in muscles from marine invertebrates, Biochem. J., 160: 447.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • Y. Robin
    • 1
  • B. Marescau
    • 2
  1. 1.Département de Physiologie, Faculté de PharmacieLaboratoire du Métabolisme Minéral des Mammifères (E.P.H.E.)Chatenay-MalabryFrance
  2. 2.Laboratory of NeurochemistryBorn-Bunge Foundation, U.I.A.WilrijkBelgium

Personalised recommendations