Advertisement

Guanidines pp 335-341 | Cite as

The Importance of Energy Intake for Preventing the Accumulation of Guanidino Compounds in Patients with Chronic Renal Failure

  • Seiji Fujiwara
  • Toshiyuki Nakano
  • Kazuo Isoda
  • Tadashi Miayahara

Abstract

It is now recognized that methylguanidine (MG) and guanidinosuccinic acid (GSA) are the prototypes of low molecular weight uremic toxins1,2. There remain, however, many problems concerning the origin of these substances. This study is designed to evaluate the effect of dietary energy intake in preventing the accumulation of MG and GSA. We report that in the presence of a high energy intake the serum levels of MG, GSA, and urea nitrogen diminish and the nutritional status improves.

Keywords

Energy Intake Chronic Renal Failure Succinic Acid Urea Synthesis High Energy Intake 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. L. Balestri, M. Biagini and P. Rindi, Uremic toxins, Arch. Intern. Med., 126: 843 (1970).CrossRefGoogle Scholar
  2. 2.
    B. D. Cohen, I. M. Stein and J. E. Bonas, Guanidinosuccinic aciduria in uremia, Am. J. Med., 45: 63 (1968).PubMedCrossRefGoogle Scholar
  3. 3.
    G. Grodstein, M. J. Blumenkrantz and J. D. Kopple,Nutritional and metabolic response to catabolic stress in uremia, Am. J. Clin. Nutr., 33: 1411 (1980).Google Scholar
  4. 4.
    Y. S. M. Taylor, N. S. Scrimshaw and V. R. Young, The relationship between serum urea levels and dietary nitrogen utilization in young men, Br. J. Nutr., 32: 407 (1974).PubMedCrossRefGoogle Scholar
  5. 5.
    A. Ando, Y. Orita, K. Nakata, Y. Tsubakihara, Y. Takamitsu, N. Ueda, M. Yanase and H. Abe, Effect of low protein diet and surplus of essential amino acids on the serum concentration and the urinary excretion of methylguanidine and guanidino succinic acid in chronic renal failure, Nephron., 24: 161 (1979).Google Scholar
  6. 6.
    S. Giovannetti, M. Biagini, P. L. Balestri, R. Navalesi, P. Giognoni, T. de Matteis, P. Ferro-Milone and C. Perfetti, Uraemia-like syndrome in dogs chronically intoxicated with methylguanidine and creatinine, Clin. Sci., 36: 445 (1969).PubMedGoogle Scholar
  7. 7.
    S. Giovannetti, P. L. Balestri, M. Biagini, C. G. Menichini, P. Rindi, Implications of dietary therapy, Arch. Intern. Med., 126: 900 (1970).CrossRefGoogle Scholar
  8. 8.
    E. P. Cottini, D. L. Gallina and J. M. Dominguez, Urea excretion in adult humans with varing degrees of kidney malfunction fed milk, egg or amino acid mixture assessment of nitrogen balance, J. Nutr., 103: 11 (1973).PubMedGoogle Scholar
  9. 9.
    C. Abitobol, G. Jean and M. Broyer, Urea synthesis in moderate experimental uremia, Kidney Int., 19: 648 (1981).CrossRefGoogle Scholar
  10. 10.
    I. M. Stein, B. D. Cohen and R. S. Kornhauser, Guanidinosuccinic acid in renal failure, experimental azotemia and in born errors of the urea cycle, N. Engl. J. Med., 280: 926 (1969).PubMedCrossRefGoogle Scholar
  11. 11.
    S. Natelson and J. E. Sherwin, Proposed mechanism for urea nitrogen reutilization: relationship between urea and proposed guanidinie cycles, Clin. Chem., 25: 1343 (1979).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • Seiji Fujiwara
    • 1
  • Toshiyuki Nakano
    • 1
  • Kazuo Isoda
    • 1
  • Tadashi Miayahara
    • 1
  1. 1.The Second Department of Internal MedicineThe Jikei University School of MedicineMinato-ku, TokyoJapan

Personalised recommendations