Advertisement

Guanidines pp 265-275 | Cite as

Guandino Compounds: Implications in Uremia

  • Burton D. Cohen

Abstract

Guanidine, which may be described as an “aminated” urea (Fig.1), was first isolated in uremia as far back as 19271. It is an extremely toxic material, producing effects when injected into dogs that mimic many of the clinical symptoms of uremia, such as encephalopathy and gastroenteropathy. Its structural similarity to urea makes it an attractive candidate for the role of the enigmatic “uremic toxin”. It makes economic sense, in states of nitrogen excess, to assemble a molecule which binds three, in place of two, amino groups to carbon.

Keywords

Uremic Patient Uremic Toxin Diamine Oxidase GUANIDINO Compound Traditional Hypothesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. H. Major and C. J. Weber, The probable presence of increased amounts of guanidine in the blood of patients with arterial hypertension, Bull. J. Hopkins Hospital 40:85 (1927).Google Scholar
  2. 2.
    B. D. Cohen, I. M. Stein and J. E. Bonas, Guanidinosuccuinic acidemia in uremia: A possible alternate pathway for urea synthesis, Am. J. Med. 45:63 (1968).PubMedCrossRefGoogle Scholar
  3. 3.
    G. Perez, A. Rey, M. Micklus and I. Stein, Cation-exchange chromatography of guanidine derivatives in plasma of patients with chronic renal failure, Clin. Chem. 22:240 (1976).Google Scholar
  4. 4.
    R. Shinkin, Y. Giatt and G. M. Berlyne, The presence and toxicity of guanidinopropionic acid in uremia. Kidney Int. 7: S301 (1975).Google Scholar
  5. 5.
    S. Giovannetti, M. Biagine and L. Cioni, Evidence that methylguanidine is retained in chronic renal failure, Experientia, 24: 341 (1968).PubMedCrossRefGoogle Scholar
  6. 6.
    R. Bright, On the functions of the abdomen and some of the diagnostic marks of its disease, London Medical Gazette 12: 150 (1833).Google Scholar
  7. 7.
    J. H. Stewart and P. A. Castaldi, Uremic bleeding: a reversible platelet defect corrected by dialysis, Quart. J. Med. 36:409 (1967).Google Scholar
  8. 8.
    H. I. Horowitz, B. D. Cohen, P. Martinez and M. F. Papayoanou: Defective ADP-induced platelet factor 3 activation in uremia. Blood 30: 331 (1967).Google Scholar
  9. 9.
    B. D. Cohen, Aberrations of the urea cycle in uremia, in: “Uremia: An International Conference on Pathogenesis, Diagnosis and Therapy, ” R. Kluthe, G. Berlyne and B. Burton, eds., Georg Thieme Verlag, Stuttgart (1972).Google Scholar
  10. 10.
    S. P. Bessman, Z. H. Koppanyi and R. A. Wapnir, A rapid method for homocysteine assay in physiological fluids, Anal. Biochem. 18:213 (1967).Google Scholar
  11. 11.
    B. D. Cohen, H. Patel and R. S. Kornhauser, Alternate reasons for atherogenesis in uremia, Proc. Dialysis Transplant Forum 7:178 (1977).Google Scholar
  12. 12.
    J. D. Kopple, Metabolic and endocrine abnormalities, in: “Clinical Aspects of Uremia and Dialysis,” A. Sellers and S. Massry, eds., Charles C. Thomas, Springfield (1976).Google Scholar
  13. 13.
    R. P. Betts and A. Green, Plasma and urine amino acid concentrations in children with chronic renal insufficiency, Nephron 18: 132 (1977).Google Scholar
  14. 14.
    J. R. Condon and A. M. Asatoor, Amino acid metabolism in uremic patients, Clin. Chem. Acta 32:333 (1971).Google Scholar
  15. 15.
    E. Held, W. Winkelmann, K. Finke, H. Dehn, G. Seyffart and H. J. Gurland, Plasma aminosauren bei chronischer miereninsuffizienz, Klin. Wschr. 52:948 (1974).Google Scholar
  16. 16.
    D. Muting and B. D. Dishuk, Free amino acids in serum, cerebrospinal fluid, and urine in renal disease with and without uremia, Proc. Soc. Exp. Biol. Med. 126:754 (1967).Google Scholar
  17. 17.
    K. S. McCully, Vascular pathology of homocysteinemia: implication for the pathogenesis of arteriosclerosis, Am. J. Path. 56:111 (1969).Google Scholar
  18. 18.
    K. S. McCully and B. D. Ragsdale, Production of arteriosclerosis by homocysteinemia, Am. J. Path. 61:1 (1970).Google Scholar
  19. 19.
    L. A. Harker, S. J. Slichter, C. R. Scott and R. Ross, Homocysteinemia: vascular injury and arterial thrombosis. N. Engl. J. Med. 291:537 (1974).Google Scholar
  20. 20.
    E. R. Uhlemann, J. H. Ten Pas, A. W. Lucky, J. D. Schulman, S. H. Mudd and N. R. Shulman, Platelet survival and morphology in homocystinuria due to cystathionine synthase deficiency, N. Engl. J. Med. 295:1283 (1976).Google Scholar
  21. 21.
    L. G. Welt, J. R. Sachs and T. J. McManus, An ion transport defect in erythrocytes from uremic subjects. J. Assoc. Am. Phys. 77:169 (1964).Google Scholar
  22. 22.
    S. Van den Noort, R. E. Eckel, K. L. Brine and J. Hrdlicka, Brain metabolism in experimental uremia, Arch. Intern. Med. 126:831 (1970).Google Scholar
  23. 23.
    F. Monkoff, G. Gaertner, M. Darab, C. Mercier and M. L. Levin, Inhibition of brain sodium potassium ATP-ase in uremic rats, J. Lab. Clin. Med. 80:71 (1972)Google Scholar
  24. 24.
    L. G. Warnock, W. J. Stone and C. Wagner, Decreased aspartate aminotransferase (SCOT) activity in serum of uremic patients. Clin. Chem. 20:1213 (1974).Google Scholar
  25. 25.
    H. Dobbelstein, W. F. Korner, W. Mempel, H. Grosse-Wilde and H. H. Edel, Vitamin B6 deficiency in uremia and its implications for the depression of immune responses, Kidney Int. 5: 233 (1974).Google Scholar
  26. 26.
    V. Gang, H. Berneburg, H. Hennemann and G. Hevendahl, Diamine oxidase (histaminase) in chronic renal disease and its inhibition in vitro by methylguanidine, Clin. Nephrol. 5:171 (1976).Google Scholar
  27. 27.
    A. S. M. Selim and D. M. Greenberg, An enzyme that synthesizes cystathionine and deaminates L-serine, J. Biol. Chem. 234:1474 (1959).Google Scholar
  28. 28.
    A. Pestana, I. V. Sandoval and A. Sols, Inhibition by homocysteine of serine dehydratase and other pyridoxal S-phosphate enzymes of the rat through cofactor blockage, Arch. Biochem. Biophys. 146:373 (1971).Google Scholar
  29. 29.
    N. S. Bricker and L. G. Fine, The Trade-off hypothesis: current status, Kidney Int. 13: 55 (1978).Google Scholar
  30. 30.
    J. M. Charcot, “Lectures on Bright’s Disease of the Kidneys,” Wm. Wood Co., New York (1878).Google Scholar
  31. 31.
    C. Giordano, Use of exogenous and endogenous urea for protein synthesis in normal and uremic subjects, J. Lab. Clin. Med. 62:231 (1963).Google Scholar
  32. 32.
    S. Giovannetti and Q. Maggiore, A low-nitrogen diet with proteins of high biological value for severe chronic uremia, Lancet 1: 1000 (1964).Google Scholar
  33. 33.
    B. M. Brenner, T. W. Meyer and T. H. Hostetter, Dietary protein intake and the progressive nature of kidney disease, N. Engl. J. Med. 307:652 (1982).Google Scholar
  34. 34.
    J. M. Cerletty and H. H. Engbring, Azotemia and glucose intolerance, Ann. Intern. Med. 66:1097 (1967).Google Scholar
  35. 35.
    J. D. Bagdade, Uremic lipemia, an unrecognized abnormality in triglyceride production and removal, Arch. Intern. Med. 126:875 (1970).Google Scholar
  36. 36.
    P. Richards, A. Metcalfe-Gibson, F. E. Ward, O. Wrong and B. J. Houghton, Utilization of ammonia nitrogen for protein synthesis in man and the effect of protein restriction in uremia, Lancet 2: 845 (1967).Google Scholar
  37. 37.
    M. Walser, A. W. Coulter, S. Dighe and F. R. Crantz, The effect of keto-analogues of essential amino acids in severe chronic uremia, J. Clin. Invest. 52:678 (1973)Google Scholar
  38. 38.
    S. Ell, M. Fynn, P. Richards and D. Halliday, Metabolic studies with keto acid diets, Am. J. Clin. Nutr. 31:1776 (1978).Google Scholar
  39. 39.
    M. Walser, Nutritional management of chronic renal failure, Am. J. Kid. Dis. 1:261 (1982).Google Scholar
  40. 40.
    C. G. Zubrod, S. L. Eversole and G. W. Dana, Amelioration of diabetes and striking rarity of acidosis in patients with Kimmelstiel-Wilson lesions, N. Engl. J. Med. 245:518 (1951).Google Scholar
  41. 41.
    A. L. Sellers, J. Katz and J. Marmorston, Effect of bilateral nephrectomy on urea formation in rat liver slices, Am. J. Physiol. 191:345 (1957).Google Scholar
  42. 42.
    R. Dzurik, T. R. Niederland and P. Cernacek, Carbohydrate metabolism by rat liver slices incubated in serum obtained from uremic patients, Clin. Sci. 37:409 (1969).Google Scholar
  43. 43.
    B. D. Cohen and H. Patel, Guanidinosuccinic acid and the alternate urea cycle in: “Urea Cycle Diseases”, A. Lowenthal, A. Mori, B. Marescau, eds., Plenum Publ. Co., New York (1983).Google Scholar
  44. 44.
    M. Levy and N. L. Starr, The mechnism of glucagon-induced natriuresis in dogs, Kidney Int. 2: 76 (1972).CrossRefGoogle Scholar
  45. 45.
    G. L. Bilbrey, G. R. Faloona, M. G. White and J. P. Knochel, Hyperglucagonemia of renal failure, J. Clin. Invest. 53:841 (1947).Google Scholar
  46. 46.
    R. N. Alsevor, R. H. Georg and K. E. Sussman, Stimulation of insulin secretion by guanidinoacetic acid and other gua-nidine derivatives, Endocrinology 86: 332 (1970).Google Scholar
  47. 47.
    B. D. Cohen, D. G. Handelsman and B. N. Pai, Toxicity arising from the urea cycle, Kidney Int. 7: S285 (1975).Google Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • Burton D. Cohen
    • 1
  1. 1.Bronx-Lebanon HospitalBronxUSA

Personalised recommendations