Skip to main content

Effect of Taurine, Taurocyamine and Anticonvulsants on Dibenzoylguanidine-Induced Convulsions and their Relation to Brain Monoamine Levels in ddY and El Mice

  • Chapter
Guanidines

Abstract

It has been reported that taurocyamine (guanidinoethanesulfonate)1, guanidinoacetic acid2, γ-guanidinobutyric acid3, N-acetylarginine4, methylguanidine5 and α-guanidinoglutaric acid6, are present in the mammalian brain and that these guanidino compounds induce violent convulsions after intracisternal injection into rabbits, dogs, cats and rats. N-amidinobenzamide7 and dibenzoylguanidine8, which do not occur naturally, have also been found to induce convulsions after intraperitoneal or intravenous injection into animals. Dibenzoylguanidine is thought to be a very suitable convulsant for the study of the convulsive mechanism, because it can easily pass the blood-brain-barrier and the latent time to induce convulsions is very long.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Mizuno, J. Mukawa, K. Kobayashi and A. Mori, Convulsive activity of taurocyamine in cats and rabbits, IRCS Med. Sci., 3:385 (1975).

    Google Scholar 

  2. D. Jinnai, A. Mori, J. Mukawa, H. Ohkusu, M. Hosotani, A. Mizuno and L. C. Tye, Biological and physiological studies on guanidino compounds induced convulsion, Jpn. J. Brain Physiol., 106:3668 (1969).

    Google Scholar 

  3. D. Jinnai, A. Sawai and A. Mori, y-Guanidinobutyric acid as a convulsive substance, Nature, 212: 617 (1966).

    Article  PubMed  CAS  Google Scholar 

  4. H. Okusu and A. Mori, Isolation of a-N-acetyl-L-arginine from cattle brain, J. Neurochem., 16:1485 (1969).

    Google Scholar 

  5. M. Matsumoto, K. Kobayashi, H. Kishikawa and A. Mori, Convulsive activity of methylguanidine in cats and rabbits, IRCS Med. Sci., 4:65 (1976).

    Google Scholar 

  6. A. Mori, Y. Watanabe, S. Shindo, M. Akagi and M. Hiramatsu, a-Guanidinoglutaric acid and epilepsy, in:“Urea Cycle Diseases,” A. Lowenthal, A. Mori and B. Marescau, eds., Plenum Publishing Corporation, New York, (1983).

    Google Scholar 

  7. E. Arrigoni-Martelli, A. Garzia and L. Vargin, Attivata’ farmacologiche della benzoilguanidina, Boll. Soc. Ital. Biol. Sper., 38:1421 (1962).

    Google Scholar 

  8. I. Nakae, Synthesis of N’N-dibenzoylguanidine and its convulsive action, Neurosciences, 7: 205 (1981).

    CAS  Google Scholar 

  9. M. Matsumoto, H. Kishikawa and A. Mori, Guanidino compounds in the sera uremic patients and in the sera and brain of experimental uremic rabbits, Biochem. Med., 16:1 (1976).

    Google Scholar 

  10. A. Mori, Y. Watanabe and M. Akagi, Guanidino compound anomalies in epilepsy, in:“Advances in Epileptology,” H. Akimoto, H. Kazamatsuri, M. Seino and A. Ward, eds., Raven Press, New York, (1982).

    Google Scholar 

  11. C. Hiramatsu, Guanidino compounds in mouse brain II. Guanidino compound levels in brain in relation to convulsions, Okayama-Igakkai-Zasshi, 92: 427 (1980).

    CAS  Google Scholar 

  12. M. Hiramatsu, H. Niiya-Nishihara and A. Mori, Effect of taurocyamine on taurine and other amino acids in the brain, liver and muscle of mice, Neurosciences, 8: 289 (1982).

    CAS  Google Scholar 

  13. R. J. Huxtable and S. E. Lippincott, Comparative metabolism and taurine-depleting effects of guanidinoethanesulfonate in cats, mice and guinea pigs, Arch. Biochem. Biophys., 210:698 (1981).

    Google Scholar 

  14. M. Hiramatsu, S. Ohara, C. Hiramatsu, K. Nanba and A. Mori, Effects of taurocyamine on motor activity and brain monoamine level of mouse, Sulfur-containing Amino Acids, 2: 79 (1979).

    Google Scholar 

  15. J. Glowinski and L. L. Iversen, Regional studies of catecholamines in the rat brain, J. Neurochem., 13:655 (1966).

    Google Scholar 

  16. M. Hiramatsu, Brain monoamine levels and El mouse convulsions. Flia Psychiat. Neurol. Jpn., 35:261 (1981).

    Google Scholar 

  17. S. W. Schaffer, J. Chovan, J. Kramer and E. Kulakowski, The role of taurine receptors in the heart, in:“The Effects of Taurine on Excitable Tissues,” S. W. Schaffer, S. I. Baskin and J. J. Kacsis, eds., Spectrum Publications, New York, (1981)

    Chapter  Google Scholar 

  18. R. J. Huxtable, H. E. Laird and S. Lippincott, Rapid depletion of tissue taurine content by guanidinoethylsulfonate, in: “The Effects of Taurine on Excitable Tissues,” S. W. Schaffer, S. I. Baskin and J. J. Kacsis, eds., Spectrum Publications, New York, (1981).

    Google Scholar 

  19. H. I. Yamamura, R. C. Speth, R. E. Hruska, N. Bresolin, B. A. Meiners and R. J. Huxtable, Effects of kainic acid lesions of taurine transport into rat brain synaptosomes, in:“The Effects of Taurine on Excitable Tissues,” S. W. Schaffer, S. I. Baskin and J. J. Kicsis, eds., Spectrum Publications, New York, (1981).

    Google Scholar 

  20. J. Bahl, C. J. Frangakis, B. Larsen, S. Chang, D. Grosso and R. Bressler, Accumulation of taurine by isolated rat heart cells and rat heart slices, in:“The Effects of Taurine on Excitable Tissues,” S. W. Schaffer, S. I. Baskin and J. H. Kocsis, eds., Spectrum Publications, New York, (1981).

    Google Scholar 

  21. K. Okamoto and Y. Sakai, Inhibitory actions of taurocyamine, hypotaurine, homotaurine, taurine and GABA on spike discharges of purkinje cells, and localization of sensitive sites, in guinea-pig cerebellar slices, Brain Res., 206: 371 (1981).

    Google Scholar 

  22. S. Shindo, M. Hiramatsu, Y. Katayama, S. Ohara, S. Miyamoto and A. Mori, Distribution and metabolism of 35S-taurocyamine administered to mouse in vivo, Sulfur Amino Acids, 5: 197 (1982).

    CAS  Google Scholar 

  23. H. Iwata, S. Yamagami, E. Lee, T. Matsuda and A. Baba, Increase of brain taurine contents of El mice by physiological stimulation, Jpn. J. Pharmacol., 29:503 (1979).

    Google Scholar 

  24. K. Kobayashi and A. Mori, Brain monoamines in seizure mechanism (Review), Follia Psychiat. Neurol. Jpn., 31:483 31:483 (1977).

    Google Scholar 

  25. A. Mori, Clinical biochemistry of epilepsy-Specially regarding to neurotransmitters, No-shinkei, 34: 1129 (1982) (in Japanese).

    CAS  Google Scholar 

  26. M. Hiramatsu, Brain 5-hydroxytryptamine level, metabolism and binding in El mice, Neurochem. Res., 8:1163 (1983).

    Google Scholar 

  27. E. W. Mynert, T. J. Marczynski and R. A. Browing, The role of the neurotransmitters in the epilepsies, Adv. Neurol., 131:79 (1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hiramatsu, M., Kabuto, H., Mori, A. (1985). Effect of Taurine, Taurocyamine and Anticonvulsants on Dibenzoylguanidine-Induced Convulsions and their Relation to Brain Monoamine Levels in ddY and El Mice. In: Mori, A., Cohen, B.D., Lowenthal, A. (eds) Guanidines. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0752-6_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0752-6_24

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0754-0

  • Online ISBN: 978-1-4757-0752-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics