Advertisement

Guanidines pp 197-204 | Cite as

Effect of Methylguanidine on Muscle Protein Synthesis

  • Masamitsu Fujii
  • Akio Ando
  • Hiroshi Mikami
  • Akira Okada
  • Enyu Imai
  • Yukifumi Kokuba
  • Yoshimasa Orita
  • Hiroshi Abe
  • Yaeta Endo
  • Kazuo Chiku
  • Yasuo Natori

Abstract

Methylguanidine (MG) is increased in the serum of uremic patients1. Giovannetti et al. considered it one of the most important uremic toxins, since the administration of MG to dogs resulted in weight loss, gastrointestinal disturbance, anemia and so on2.

Keywords

Muscle Protein Muscle Protein Synthesis Uremic Patient Uremic Toxin Wasting Syndrome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. 1.
    Y. Orita, A. Ando, Y. Tsubakihara, H. Mikami, T. Kikuchi, K. Nakata and H. Abe, Tissue and blood cell concentration of methylguanidine in rats and patients with chronic renal failure, Nephron., 27: 35 (1981).PubMedCrossRefGoogle Scholar
  2. 2.
    S. Giovannetti and G. Barsotti, Methylguanidine in uremia, Arch Intern Med., 131: 709 (1973).PubMedCrossRefGoogle Scholar
  3. 3.
    J. U. Koppel, Nutritional management of chronic renal failure, Postgrad. Med., 4: 135 (1978).Google Scholar
  4. 4.
    T. Kikuchi, Y. Orita, A. Ando, H. Mikami, M. Fujii, A. Okada and H. Abe, Liquid-chromatographic determination of guanidino compounds in plasma and erythrocyte of normal persons and uremic patients, Clin. Chem., 27: 1899 (1981).PubMedGoogle Scholar
  5. 5.
    G. Schmidt and J. Thannhauser, A method for the determination of deoxyribonucleic acid, ribonucleic acid, and phosphoproteins in animal tissues, J. Biol. Chem., 161: 83 (1945).PubMedGoogle Scholar
  6. 6.
    W. C. Schneider, Phosphorus compounds in animal tissues, J. Biol. Chem., 164: 747 (1946).PubMedGoogle Scholar
  7. 7.
    W. C. Schneider, Determination of nucleic acids in tissues by pentose analysis, in:“Method in enzymology, vol 3,” Academic Press, New York, pp. 680 (1957).CrossRefGoogle Scholar
  8. 8.
    K. W. Giles and A. Myers, An improved diphenylamine method for the estimation of deoxyribonuleic acid, Nature, 4979: 93 (1965).CrossRefGoogle Scholar
  9. 9.
    H. Lowry, N. J. Rosebrough, A. L. Farr and R. L. Randall, Protein measurement with Folin phenol reagent,J. Biol. Chem., 193: 265 (1951).PubMedGoogle Scholar
  10. 10.
    A. Yoshikawa and T. Masaki, Increase in protein synthetic activity in chicken muscular dystrophy, J. Biochem., 90: 1775 (1981).Google Scholar
  11. 11.
    J. E. Shackelford and H. G. Lebherz, Cell-free synthesis of fructose diphosphate aldolases A, B, and C, J. Biol. Chem., 254: 4220 (1979).PubMedGoogle Scholar
  12. 12.
    J. C. Waterlow, P. J. Garlick and D. J. Willward, Protein synthesis and its regulation, in:“Protein turnover in mammalian tissues and in the whole body,” North-Holland, Amsterdam, pp.24 (1978).Google Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • Masamitsu Fujii
    • 1
  • Akio Ando
    • 1
  • Hiroshi Mikami
    • 1
  • Akira Okada
    • 1
  • Enyu Imai
    • 1
  • Yukifumi Kokuba
    • 1
  • Yoshimasa Orita
    • 1
  • Hiroshi Abe
    • 1
  • Yaeta Endo
    • 2
  • Kazuo Chiku
    • 2
  • Yasuo Natori
    • 2
  1. 1.First Department of MedicineOsaka University Medical SchoolOsaka 553Japan
  2. 2.Department of Nutritional ChemistryTokushima University Medical SchoolTokushima 770Japan

Personalised recommendations