Guanidines pp 171-180 | Cite as

Determination of Guanidino Compounds in Plasma and Urine of Patients with Argininemia before and during Therapy

  • B. Marescau
  • I. A. Qureshi
  • P. De Deyn
  • J. Letarte
  • M. Yoshino
  • A. Lowenthal


The first clinical and biochemical description of two sisters affected with argininemia, last of the five primary disorders of the urea cycle, was published in 19691–3. A third sister homozygote was described shortly after birth five years later4. Five other families including eight cases have been reported in the literature5–10. The first clinical symptoms seen in patients with argininemia are irritability, coma and epilepsy. The children show also pyramidal spasticity and mental retardation. All the patients described are still alive. The patient’s biochemistry is characterized by an arginase deficiency in liver shown after biopsy as well as in erythrocytes and leucocytes. As a consequence to this arginase deficiency, the patients accumulate arginine in their cells and biological fluids. The arginine accumulation leads to an increase of its catabolites: the guanidino compounds. Already in 1972 it was reported that guanidinoacetic acid, N-α-acetylarginine, argininic acid, γ-guanidinobutyric acid, arginine and an unknown guanidino compound (later identified as being γ-keto-δ-guanidinovaleric acid11) were elevated in urine of these patients12. These determinations were done applying the colorimetric Sakaguchi detection method.


Heterozygous Parent Arginine Concentration Argininic Acid Guanidino Compound Urea Cycle Disorders2 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. G. Terheggen, A. Schwenk, A. Lowenthal, M. Van Sande and J. P. Colombo, Argininemia with arginase deficiency, Lancet, 2: 748–749 (1969).CrossRefGoogle Scholar
  2. 2.
    H. G. Terheggen, A. Schwenk, A. Lowenthal, M. Van Sande and J. P. Colombo, Hyperargininämie mit Arginäsedefekt. Eine neue familiâre Stoffwechselstôrung, I. Klinische Befunde, Z. Kinderheilk., 107: 298–312 (1970).Google Scholar
  3. 3.
    H. G. Terheggen, A. Schwenk, A. Lowenthal, M. Van Sande and J. P. Colombo, Hyperargininäpiie mit Arginäsedefekt. Eine neue familiâre Stoffwechselstörung. II. Biochemische Untersuchungen, Z. Kinderheilk., 107: 313–323 (1970).Google Scholar
  4. 4.
    H. G. Terheggen, A. Lowenthal, F. Lavinha and J. P. Colombo, Familial hyperargininemia, Arch. Dis. Child., 50: 57–62 (1975).CrossRefGoogle Scholar
  5. 5.
    S. D. Cederbaum, K. N. F. Shaw and M. Valente, Hyperargininemia, J. Pediatr., 90: 569–573 (1977).CrossRefGoogle Scholar
  6. 6.
    V. V. Michels and A. L. Beaudet, Arginase deficiency in multiple tissues in argininemia, Clin. Genet., 13: 61–67 (1978).Google Scholar
  7. 7.
    S. E. Snyderman, C. Sansaricq, W. F. Chen, P. M. Norton and S. V. Phansalkar, Argininemia, J. Pediatr., 90: 563 (1977).CrossRefGoogle Scholar
  8. 8.
    I. A. Qureshi, J. Letarte, R. Quellet, M. Leliévre and C. Laberge, Ammonia metabolism in a family affected by hyperargininemia, Diabète et Métabol., 7: 5 (1981).Google Scholar
  9. 9.
    I. A. Qureshi, J. Letarte, R. Quellet and J. Larochelle, A new French-Canadian family affected by hyperargininemia, Pediatr. Res., 16: 194A (1982).Google Scholar
  10. 10.
    M. Yoshino, K. Kubota, I. Yoshida, T. Murakami and F. Yamashita, Argininemia: report of a new case and mechanisms of orotic aciduria and hyperammonemia, in:“Urea Cycle Diseases,” A. Lowenthal, A. Mori and B. Marescau, eds., Advances in experimental medicine and biology, vol. 153, Plenum Press, New York, pp. 121–125 (1982).Google Scholar
  11. 11.
    B. Marescau, J. Pintens, A. Lowenthal, E. Esmans, Y. Luyten, G. Lemiere, R. Domisse, F. Alderweireldt and H. G. Terheggen, Isolation and identification of a-keto-S-guanidinovaleric acid in urine of patients with hyperargininemia by chromatography and gas chromatography-mass spectrometry, J. Clin. Chem. Biochem., 19: 61–65 (1981).Google Scholar
  12. 12.
    H. G. Terheggen, F. Lavinha, J. P. Colombo, M. Van Sande and A. Lowenthal, Familial hyperargininemia, J. Genet. Hum., 20: 69–84 (1972).Google Scholar
  13. 13.
    Y. Hiraga and T. Kinoshita, Post-colomn derivatization of guanidino compounds in high-performance liquid chromatography using ninhydrin, J. Chromat., 226: 43–51 (1981).Google Scholar
  14. 14.
    A. Mizuno, J. Mukawa, K. Kobayashi and A. Mori, Convulsive activity of taurocyamine in cats and rabbits, IRCS Med. Sci., 3: 385 (1975).Google Scholar
  15. 15.
    D. Junnai, A. Mori, J. Mukawa, H. Ohkusu, M. Hosotani, A. Mizuno and L.C. Tye, Biochemical and physiological studies on guanidino compounds induced convulsions, Jpn. J. Brain Physiol., 160: 3668–3673 (1969).Google Scholar
  16. 16.
    D. Jinnai, A. Sawai and A. Mori, y-Guanidinobutyric acid as a convulsive substance, Nature, 212: 617 (1966).PubMedCrossRefGoogle Scholar
  17. 17.
    H. Ohkusu, Osaka-gakkai-Zashi, 21: 49–55 (1970).Google Scholar
  18. 18.
    A. Mori, Y. Watanabe, S. Shindo, M. Akagi and M. Hiramatsu, y-Guanidinoglutaric acid and epilepsy, in:“Urea Cycle diseases,” A. Lowenthal, A. Mori and B. Marescau, eds., Advances in experimental medicine and biology, vol. 153, Plenum Press, New York, pp. 419–426 (1982).Google Scholar
  19. 19.
    M. Matsumoto, K. Kobayashi, H. Kishikawa and A. Mori, Convulsive activity of methylguanidine in cats and rabbits, IRCS Med. Sci., 4: 65 (1976).Google Scholar
  20. 20.
    B. Marescau, M. Hiramatsu and A. Mori, a-keto-d-guanidinovaleric acid induced electroencephalographic, epileptiform discharges in rabbits, Neurochem. Pathol., in press.Google Scholar
  21. 21.
    A. Scott-Emuakpor, On the hydrolysis of homoarginine by arginase, J. West Afr. Sci. Ass., 17: 161–170 (1972).Google Scholar
  22. 22.
    G. Perez, A. Rey and E. Schiff, The biosynthesis of guanidinosuccinic acid by peffused rat liver, J. Clin. Invest., 57: 807–809 (1976).CrossRefGoogle Scholar
  23. 23.
    S. Natelson and J. E. Sherwin, Proposed mechanism for urea nitrogen re-utilization. Relationship between urea and proposed guanidine cycles, Clin. Chem., 25: 1343–1344 (1979).Google Scholar
  24. 24.
    A. Lowenthal and B. Marescau, Urinary excretion fo monosubstituted guanidines in patients affected with urea cycle diseases, in:“6th International congress of neurogenetics and neuro-ophthalmology,” A. Huber and D. Klein, eds., Elsevier/North Holland Biomedical Press, Amsterdam, pp. 347–350 (1981).Google Scholar
  25. 25.
    N. V. Thoai and J. Roche, Biochemie du groupement guanidique, Exp. Ann. Biochim. Med., 18: 165–185 (1956).Google Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • B. Marescau
    • 1
  • I. A. Qureshi
    • 2
  • P. De Deyn
    • 1
  • J. Letarte
    • 2
  • M. Yoshino
    • 3
  • A. Lowenthal
    • 1
  1. 1.Laboratory of NeurochemistryBorn-Bunge Foundation U.I.A.WilrijkBelgium
  2. 2.Centre de Recherche pédiatriqueHôpital Ste.JustineMontrealCanada
  3. 3.Department of PediatricsKurume University School of MedicineKurume 830Japan

Personalised recommendations