Advertisement

Guanidines pp 145-148 | Cite as

Arginine Utilization in Muscle and Kidney of Frog during Ammonotoxemia

  • P. Neeraja
  • K. S. Swami

Abstract

The lethal effects of ammonia toxicity are well established. To resist the toxemia, the detoxification mechanism may occur in animalsl and some of these involve arginase metabolism.

Keywords

Kidney Tissue Arginase Activity Ammonia Toxicity Urea Content Ammonia Stress 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. L. Prosser, “Comparative Animal Physiology,”W. B. Saunders company, (1973).Google Scholar
  2. 2.
    N. V. Thoai and J. Roche, Biological guanidine derivarive, Fortsch Chem. org Naturstoffe., 18: 83 (1960).Google Scholar
  3. 3.
    F. J. R. Hird, D. Sivaprasad and R. M. McClean, Evolutionary relationships between arginine and creatine in muscle, in: “Urea cycle diseases,” A. Lowenthal, A. Mori and B. Marescau, eds., Plenum Press, New York & London (1981).Google Scholar
  4. 4.
    P. Neeraja and K. S. Swami, Induced transient hyperammonemia in Rana hexadactyla with reference to the ammonia and urea excretion, Ind J. Physiol. Pharmacol., 27:123 (1983).Google Scholar
  5. 5.
    J. W. Campbell, Studies on tissue arginase and ureogenesis in the elasmobranch Mustelus canis, Arch. Biochem. Biophys., 93:448 (1961).PubMedCrossRefGoogle Scholar
  6. 6.
    S, Natelson, “Techniquies of clinical chemistry,” Thomas. CC, ed., Spring field, Illinois (1971).Google Scholar
  7. 7.
    H. A. Harper, Catabolism of amino acids, in: “Review of physiological chemistry,” Lange Medical Book Publ. California (1977).Google Scholar
  8. 8.
    S. Natelson and J. E. Sherwin, Proposed mechanism for nitrogen reutilization: Relationship between urea and proposed guanidine cycles, Clin. Chem., 25:1343 (1979).PubMedGoogle Scholar
  9. 9.
    A. L. Triffilis, M. W. Kahng and B. F. Trump, Metabolic studies of mercuric chloride-induced acute renal failure in the rat, Exp. Mol. Pathol., 35(1):14 (1981).CrossRefGoogle Scholar
  10. 10.
    Y. Yonetani and K. Iwake, Catecholamine induced hyperuricemia in eviscerated rats with functional hepatectomy, J. Pharmacol., 31(3):323 (1981).Google Scholar
  11. 11.
    B. Marescau, A. Lowenthal, E. Esman, Y. Leuten, W. Alder T. Frank and G. Heinz, Isolation and identification of some guanidine compounds in the urine of patients with hyperargininaemia by liquid chromatography, thin layer chromatography & gas chromatography-mass spectrometry, J. Chromatogr., 224(2):185 (1981).Google Scholar
  12. 12.
    Y. Katayama, S. Shindo, A. Sawaki, Y. Watanabe, C. Hiramatsu and A. Mori, Biosynthesis of taurocyamine by transamidination reaction of taurine, Ganryu Aminosan., 2: 297 (1979).Google Scholar
  13. 13.
    P. Neeraja and K. S. Swami, Effect of induced ammonia toxicity of urea cycle enzymes of frog, Indian. J. Comp. Anim. Physiol., 1:19 (1983).Google Scholar
  14. 14.
    N. V. Thoai, Guanidine derivatives, their biological roles, Collog Intern. Centre. Natl. Recherch. Sci. (Paris)., 2:297 (1959).Google Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • P. Neeraja
    • 1
  • K. S. Swami
    • 1
  1. 1.Department of ZoologySri Venkateswara UniversityTirupatiIndia

Personalised recommendations