Advertisement

Higgs Particles from Pure Gauge Fields

  • Hagen Kleinert
Part of the The Subnuclear Series book series (SUS, volume 20)

Abstract

One of the important outstanding questions in unified gauge theories of weak and electromagnetic interactions is the physical nature of the Higgs particles required by renormalization. Until recently, ideas have been guided by the first historical appearance of such fields in the context of superconductivity. In 1934, Gorter and Casimir1 first proposed the use of a space time independent order parameter for the description of the temperature behavior of the specific heat in the superconductive phase transition. In 1937, Landau2 made the order parameter a local order field by introducing gradient terms permitting the study of spatial fluctuations. This theory has the characteristic that as the temperature of the system passes below a certain temperature T c, the mass term which stabi-lizes fluctuations changes sign, thereby leading to a non-vanishing expectation value \(\left\langle \varphi \right\rangle \equiv {\varphi _0} \ne 0\) of the order field. There is a second order phase transition to an ordered phase.

Keywords

Gauge Theory Partition Function Magnetic Monopole Lattice Gauge Theory Higgs Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    C.J. Gorter and H.B. Casimir, Phys. Z. 35, 963 (1934).Google Scholar
  2. 2).
    L.D. Landau, Phys. Z. Sovietunion 11, 129,545(1937), reprinted in The Collected Papers of L.D. Landau ed. by ter Haar, Gordon and Breach-Pergamon, New York, 1965, p. 193.Google Scholar
  3. 3).
    V.L. Ginzburg and L.D. Landau, Zh. Eksp i. Teor. Fiz. 20, 1064 (1950).Google Scholar
  4. 4).
    W. Meissner and R. Ochsenfeld, Naturwiss. 21, 787(1933).Google Scholar
  5. 5).
    F. Englert and R. Brout, Phys. Rev. Lett. 13, 321(1964).P.W. Higgs, Phys. Lett. 12, 132(1964), 13, 508(1964).G.S. Guralnik, C.R. Hagen, and T.W.B. Kibble, Phys. Rev. Lett. 13, 585(164).Google Scholar
  6. 6).
    C. Itzykson, and J.-B. Zuber, Quantum Field Theory McGraw-Hill, New York, 1980.Google Scholar
  7. 7).
    L.P. Gorkov, Zh. Eksp. Teor. Fiz. 36, 1918, 37, 1407(1959),(Sov. Phys.) ETP 9, 1364(1959), 10, 998(1960).Google Scholar
  8. 8).
    H. Kleinert, Phys. Lett. A89 295(1982).Google Scholar
  9. 9).
    H. Kleinert, Lett. Nuovo Cimento 34, 103(1982).Google Scholar
  10. 10).
    H. Kleinert, Phys. Lett. A90 259(1982).Google Scholar
  11. 11).
    F.G. Wilson, Phys. Rev. D10, 2445(1974).Google Scholar
  12. 12).
    J. Villain, H. Phys. (Paris) 36, 581(1975).Google Scholar
  13. 13).
    T. Banks, R. Myerson, and J. Kogut, Nucl. Phys. B129 493(1977).Google Scholar
  14. 14).
    M.E. Peskin, Ann. Phys. (New York) 113, 122(1978).Google Scholar
  15. 15).
    In a less definite way, this hypothesis was advanced in H. Kleinert, Lett. Nuovo Cimento 34, 209 (1982).Google Scholar
  16. 16).
    B. Cabrera, Phys. Rev. Lett. 48, 1378(1982)Google Scholar
  17. 17).
    P. Dirac, Proc. Roy. Soc. A133 60(1931)Google Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • Hagen Kleinert
    • 1
  1. 1.Physics DepartmentFree University BerlinBerlin 33Germany

Personalised recommendations