Advertisement

Soft-Bottom Succession and the Fossil Record

  • Peter L. McCall
  • Michael J. S. Tevesz
Part of the Topics in Geobiology book series (TGBI, volume 3)

Abstract

It is perhaps ironic that the editors of this book would emphasize in their own contribution that certain patterns of biotic interactions found in modern soft-bottom communities are not likely to be preserved in the fossil record and that the interpretation of some preserved patterns is problematical. But this is our conclusion with respect to successions on soft bottoms. After examining both live and dead shelled faunas of nearshore clastic facies, we also conclude that the areal distribution of fossil species cannot be used to establish with certainty the dominant controls of the distribution of living fauna. But these conclusions are provisional, and more subtle and clever analysis may eventually vitiate our pessimism and better explain the causes for some distributional patterns.

Keywords

Fossil Record Biotic Interaction Forest Succession Soft Bottom Ecologic Succession 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander, R. R., 1977, Growth, morphology and ecology of Paleozoic and Mesozoic opportunistic species of brachiopods from Idaho—Utah, J. Paleontol. 51: 1133–1149.Google Scholar
  2. Alexandersson, E. T., 1976, Actual and anticipated petrographic effects of carbonate undersaturation in shallow sea water, Nature (London) 262: 653–657.Google Scholar
  3. Aller, R. C., 1980, Diagenetic processes near the sediment—water interface of Long Island Sound. I. Decomposition and nutrient element geochemistry (S, N, P), Adv. Geophys. 22: 237–350.Google Scholar
  4. Aller, R. C., 1982a, The effects of macrobenthos on chemical properties of marine sediment and overlying water, in: Animal—Sediment Relations ( P. L. McCall and M. J. S. Tevesz, eds.), pp. 53–102, Plenum Press, New York.Google Scholar
  5. Aller, R. C., 1982b, Carbonate dissolution in nearshore terrigenous muds: The role of physical and biological reworking, J. Geol. 90: 79–95.Google Scholar
  6. Aller, R. C., and Cochran, J. K., 1976, 234Th/238U disequilibrium in nearshore sediment: Particle reworking and diagenetic time scales, Earth Planet. Sci. Lett. 29: 37–50.Google Scholar
  7. Aller, R. C., Benninger, L. K., and Cochran, J. K., 1980, Tracking particle associated processes in nearshore environments by use of 234Th/238U disequilibrium, Earth Planet. Sci. Lett. 47: 161–175.Google Scholar
  8. Bambach, R. K., and Sepkoski, J. J., Jr., 1979, The increasing influence of biologic activity on sedimentary stratification through the Phanerozoic, Geol. Soc. Am. Abstr. Progr. 11: 383.Google Scholar
  9. Benninger, L. K., Aller, R. C., Cochran, J. K., and Turekian, K. K., 1979, Effects of biological sediment mixing on the 210Pb chronology and trace metai distribution in a Long Island Sound sediment core, Earth Planet. Sci. Lett. 43: 241–259.Google Scholar
  10. Blevgad, H., 1925, Continued studies on the quantity of fish-food in the sea bottom, Rep. Dan. Biol. Stn. 31: 27–56.Google Scholar
  11. Bokuniewicz, H. J., and Gordon, R. B., 1980, Sediment transport and deposition in Long Island Sound, Adv. Geophys. 22: 69–106.Google Scholar
  12. Bokuniewicz, H. J., Gebert, J., and Gordon, R. B., 1976, Sediment mass balance of a large estuary, Long Island Sound, Estuarine Coastal Mar. Sci. 4: 523–536.Google Scholar
  13. Brenchley, G. A., 1981, Disturbance and community structure: An experimental study of bioturbation in marine soft-bottom environments, J. Mar. Res. 34: 767–790.Google Scholar
  14. Bretsky, P. W., and Bretsky, S. S., 1975, Succession and repetition of Late Ordovician fossil assemblages from the Nicolet River Valley, Quebec, Paleobiology 1: 225–237.Google Scholar
  15. Chapman, V. J., 1968, The Algae, St. Martin’s Press, New York.Google Scholar
  16. Clements, F. E., 1916, Plant succession: An analysis of the development of vegetation, Carnegie Inst. Washington Publ. 242.Google Scholar
  17. Connell, J. H., 1961, The influence of interspecific competition and other factors on the distribution of the barnacle Chthamalus stellatus, Ecology 42: 710–723.Google Scholar
  18. Connell, J. H., 1972, Community interactions on marine rocky intertidal shores, Annu. Rev. Ecol. Syst. 3: 169–192.Google Scholar
  19. Connell, J. H., and Slayter, R. O., 1977, Mechanisms of succession in natural communities and their role in community stability and organization, Am. Nat. 111: 1119–1144.Google Scholar
  20. Cooper, W. S., 1923, The recent ecological history of Glacier Bay, Alaska. II. The present vegetation cycles, Ecology 4: 93–222.Google Scholar
  21. Cooper, W. S., 1931, A third expedition to Glacier Bay, Alaska, Ecology 12: 61–95.Google Scholar
  22. Cowles, H. C., 1911, The causes of vegetative cycles, Bot. Gaz. 51: 161–183.Google Scholar
  23. Dayton, P. K., 1971, Competition, disturbance, and community organization: The provision and subsequent utilization of space in a rocky intertidal community, Ecol. Monogr. 41: 351–389.Google Scholar
  24. Dayton, P. K., 1973, Two cases of resource partitioning in an intertidal community: Making the right prediction for the wrong reason, Am. Nat. 107: 662–670.Google Scholar
  25. Dayton, P. K., 1975, Experimental evaluation of ecological dominance in a rocky intertidal algal community, Ecol. Monogr. 45: 137–159.Google Scholar
  26. Dayton, P. K., and Oliver, J. S., 1980, An evaluation of experimental analyses of population and community patterns in benthic marine environments, in: Marine Benthic Dynamics ( K. R. Tenore and B. C. Coull, eds.), pp. 93–120, University of South Carolina Press, Columbia.Google Scholar
  27. Dodge, R. E., and Vaisnys, J. R., 1980, Skeletal growth chronologies of Recent and fossil corals, in: Skeletal Growth of Aquatic Organisms ( D. C. Rhoads and R. A. Lutz, eds.), pp. 493–517, Plenum Press, New York.Google Scholar
  28. Driscoll, E. G., 1975, Sediment–animal–water interaction, Buzzards Bay, Massachusetts, J. Mar. Res. 33: 275–302.Google Scholar
  29. Drury W. H., and Nisbet, I. C. T., 1973, Succession, Arnold Arbor. J. 54: 331–368.Google Scholar
  30. Egler, F. E., 1954, Vegetation science concepts. 1. Initial floristic composition—a factor in old field vegetation development, Vegetatio 4: 412–417.Google Scholar
  31. Fager, E. W., 1964, Marine sediments: Effects of a tube-building polychaete, Science 143: 356–359.PubMedGoogle Scholar
  32. Frankland, J. C., 1966, Succession of fungi on Pteridium petioles, J. Ecol. 54: 41–63.Google Scholar
  33. Fridriksson, S., 1975, Surtsey, Wiley, New York.Google Scholar
  34. Fürsich, F. T., 1978, The influence of faunal condensation and mixing on the preservation of fossil benthic communities, Lethaia 11: 243–250.Google Scholar
  35. Ginsburg, R. N., 1956, Environmental relationships of grain size and constituent particles in some south Florida carbonate sediments, Bull. Am. Assoc. Petrol. Geol. 40: 2384–2427.Google Scholar
  36. Gleason, H. A., 1917, The structure and development of the plant association, Bull. Torrey Bot. Club 43: 463–481.Google Scholar
  37. Goldberg, E. D., and Koide, M., 1962, Geochronological studies of deep sea sediments by the ionium/thorium method, Geochim. Cosmochim. Acta 26: 417–450.Google Scholar
  38. Goldring, R., and Kazmierczak, J., 1974, Ecological succession in intraformational hardground formation, Paleontology 17: 949–962.Google Scholar
  39. Golley, F. B., 1977, Ecological Succession, Dowden, Hutchinson and Ross, Stroudsburg, Pa.Google Scholar
  40. Gordon, R. B., 1980, The sedimentary system of Long Island Sound, Adv. Geophys. 22: 139.Google Scholar
  41. Gould, S. J., 1976, Paleontology plus ecology as paleobiology, in: Theoretical Ecology: Principles and Applications ( R. M. May, ed.), pp. 218–236, Saunders, Philadelphia.Google Scholar
  42. Gould, S. J., 1980, The promise of paleobiology as a nomothetic, evolutionary discipline, Paleobiology 6: 96–118.Google Scholar
  43. Grassle, J. F., and Grassle, J. P., 1974, Opportunistic life histories and genetic systems in marine benthic polychaetes, J. Mar. Res. 32: 253–284.Google Scholar
  44. Grigg, R. W., and Maragos, J. E., 1974, Recolonization of hermatypic corals on submerged lava flows in Hawaii, Ecology 55: 387–395.Google Scholar
  45. Guinasso, N. L., and Schink, D. R., 1975, Quantitative estimates of biological mixing rates in abyssal sediments, J. Geophys. Res. 80: 3032–3043.Google Scholar
  46. Hanes, T. L., 1971. Succession after fire in the Chaparral of southern California, Ecol. Monogr. 41: 27–52.Google Scholar
  47. Harger, J. R. E., 1972, Competitive coexistence among intertidal invertebrates, Am. Sci. 60: 600–607.Google Scholar
  48. Harlow, W. H., and Harrar, E. S., 1969, Textbook of Dendrology, McGraw–Hill, New York.Google Scholar
  49. Harris, F. W., and Martin, W. D., 1979, Benthic community development in limestone beds of the Waynesville (Upper Dillsboro) Formation (Cincinattian series, Upper Ordovician) of southeastern Indiana, J. Sedim. Petrol. 49: 1295–1306.Google Scholar
  50. Henry, J. D., and Swan, J. M. A., 1974, Reconstructing forest history from live and dead plant material—An approach to the study of forest succession in southwestern New Hampshire, Ecology 55: 772–783.Google Scholar
  51. Hewatt, W. G., 1935, Ecological succession in the Mytilus californianus habitat as observed in Monterey Bay, California, Ecology 16: 244–251.Google Scholar
  52. Holme, N. A., 1950, Population dispersion in Tellina tenuis Da Costa, J. Mar. Biol. Assoc. U.K. 29: 267–280.Google Scholar
  53. Horn, H. S., 1974, The ecology of secondary succession, Annu. Rev. Ecol. Syst. 5: 25–37.Google Scholar
  54. Horn, H. S., 1975a, Forest succession, Sci. Am. 232 (5): 90–98.Google Scholar
  55. Horn, H. S., 1975b, Markovian properties of forest succession, in: Ecology and Evolution of Communities (M. L. Cody and J. M. Diamond, eds.), pp. 196–211Google Scholar
  56. Jackson, J. B. C., 1972, The ecology of molluscs of Thallasia communities, Jamaica, West Indies, II. Molluscan population variability along an environmental stress gradient, Mar. Biol. 14: 304–337.Google Scholar
  57. Johnson, M. E., 1977, Succession and replacement in the development of Silurian brachiopod populations, Lethaia 10: 83–93.Google Scholar
  58. Johnson, R. G., 1960, Models and methods of analysis of the mode of formation of fossil assemblages, Geol. Soc. Am. Bull. 71: 1075–1086.Google Scholar
  59. Johnson, R. G., 1972, Conceptual models of benthic marine communities, in: Models in Paleobiology ( T. J. M. Schopf, ed.), pp. 148–159, Freeman, Cooper, San Francisco.Google Scholar
  60. Jones, N. S., 1950, Marine bottom communities, Biol. Rev. 25: 283–313.Google Scholar
  61. Kitching, J. A., Ebling, F. J., Gamble, J. C., Hoare, R., McLeod, A. A. Q. R., and Norton, T. A., 1976, The ecology of Lough Ine. XIX. Seasonal changes in the western trough, J. Anim. Ecol. 45: 731–753.Google Scholar
  62. Knight, D. H., 1975, An analysis of late secondary succession in a species-rich tropical forest, in: Tropical Ecological Systems ( F. B. Colley, ed.), pp. 53–59, Springer-Verlag, Berlin.Google Scholar
  63. Knight, M., and Parke, M. W., 1950, A biological study of Fucus vesiculosus L. and F. serratus L., J. Mar. Biol. Assoc. U.K. 29: 439–514.Google Scholar
  64. Knutson, D. W., Buddemeir, R. W., and Smith, S. V., 1972, Coral chronometers: Seasonal growth bands in reef corals, Science 177: 270–272.PubMedGoogle Scholar
  65. Kukal, Z., 1970, Geology of Recent Sediments, Academia, Prague.Google Scholar
  66. Lawrence, D. R., 1968, Taphonomy and information losses in fossil communities, Geol. Soc. Am. Bull. 79: 1314–1330.Google Scholar
  67. Levin, L. A., 1981, Dispersion, feeding behavior and competition in two spionid polychaetes, J. Mar. Res. 34: 99–117.Google Scholar
  68. Levinton, J. S., 1970, The paleoecological significance of opportunistic species, Lethaia 3: 6978.Google Scholar
  69. Levinton, J., 1971, Ecological relationships in shallow water deposit-feeding communities, Ph.D. dissertation, Yale University.Google Scholar
  70. Levinton, J. S., 1977, The ecology of deposit-feeding communities: Quisset Harbor, Massachusetts, in: Ecology of Marine Benthos ( B. C. Coull, ed.), pp. 191–228, University of South Carolina Press, Columbia.Google Scholar
  71. Levinton, J. S., 1982, Marine Ecology, Englewood Cliffs, N.J.Google Scholar
  72. Lewis, J. R., 1964, The Ecology of Rocky Shores, The English Universities Press, London.Google Scholar
  73. McCall, P. L., 1977, Community patterns and adaptive strategies of the infaunal benthos of Long Island Sound, J. Mar. Res. 35: 221–266.Google Scholar
  74. McCall, P. L., 1978, Spatial–temporal distributions of Long Island Sound infauna: The role of bottom disturbance in a nearshore marine habitat, in: Estuarine Interactions ( M. L. Wiley, ed.), pp. 191–219, Academic Press, New York.Google Scholar
  75. McCrone, A., Ellis, B. F., and Charmatz, R., 1961, Preliminary observations on Long Island Sound sediments, Trans. N.Y. Acad. Sci. 24: 119–129.Google Scholar
  76. McNaughton, S. J., and Wolf, L. L., 1973, General Ecology, Holt, Rinehart and Winston, New York.Google Scholar
  77. Makurath, J. H., 1977, Marine faunal assemblages in the Silurian–Devonian Keyser Limestone of the central Appalachians, Lethaia 10: 235–256.Google Scholar
  78. Margalef, R., 1968, Perspectives in Ecological Theory, University of Chicago, Press, Chicago.Google Scholar
  79. Matisoff, G., 1982, Mathematical models of bioturbation, in: Animal–Sediment Relations ( P. L. McCall and M. J. S. Tevesz, eds.), pp. 289–330, Plenum Press, New York.Google Scholar
  80. Menge, B. A., 1976, Organization of the New England rocky intertidal community: Role of predation, competition, and environmental heterogeneity, Ecol. Monogr. 46: 255–293.Google Scholar
  81. Millici, R. C., and Walker, K. R., 1973, Depositional environments—mudbanks and “lakes”—in the Moccasin Formation, Raccoon Valley, Knox County, Tennessee, Tenn. Div. Geol. Bull. 70: 152–158.Google Scholar
  82. Mills, E. L., 1969, The community concept in marine zoology, with comments on continua and instability in some marine communities: A review, J. Fish. Res. Board Can. 26: 1415 1428.Google Scholar
  83. Moore, H. B., 193la, Muds of the Clyde Sea area. III. Chemical and physical conditions; rate and nature of sedimentation: and fauna, J. Mar. Biol. Assoc. U.K. 17: 359–366.Google Scholar
  84. Moore, H. B., 1931b, The specific identifications of fecal pellets, J. Mar. Biol. Assoc. U.K. 17: 359–366.Google Scholar
  85. Moore, H. B., 1958, Marine Ecology, Wiley, New York.Google Scholar
  86. Moore, J. R., 1963, Bottom sediment studies, Buzzards Bay, Mass., J. Sediment. Petrol. 33: 511–558.Google Scholar
  87. Myers, A. C., 1979, Summer and winter burrows of a mantis shrimp, Squilla empusa. in Narragansett Bay, Rhode Island (U.S.A.), Estwarine Coastal Mar. Sci. 8: 87–98.Google Scholar
  88. Nichols, F. H., 1977, Dynamics and production of Pectinaria koreni in Kill Bay, West Germany, in: Biology of Benthic Organisms ( B. F. Keegan, P. O’Ceidigh, and P. J. S. Boaden, eds.), pp. 453–464, Pergamon Press, Elmsford, N.Y.Google Scholar
  89. Northcraft, R. D., 1948, Marine algal colonization on the Monterey Peninsula, California, Am. J. Bot. 35: 396–404.Google Scholar
  90. Odum, E. P., 1971, Fundamentals of Ecology, Saunders, Philadelphia.Google Scholar
  91. Oosting, H. J., 1942, An ecological analysis of plant communities of Piedmont, North Carolina, Am. Midl. Nat. 28: 1–126.Google Scholar
  92. Orth, R. J., 1977, The importance of sediment stability in seagrass communities, in: Ecology of Marine Benthos ( B. C. Coull, ed.), pp. 281–311, University of South Carolina Press, Columbia.Google Scholar
  93. Paine, R. T., 1966, Food web complexity and species diversity, Am. Nat. 100: 65–75.Google Scholar
  94. Parke, M. W., 1948, Studies on British Laminariaceae. I. Growth in Laminaria saccharine (L.) Lamour, J. Mar. Biol. Assoc. U.K. 27: 651–709.Google Scholar
  95. Pearson, T. H., and Rosenberg, R., 1978, Macrobenthic succession in relation to organic enrichment and pollution of the marine environment, Oceanogr. Mar. Biol. Annu. Rev. 16: 229–311.Google Scholar
  96. Petersen C. G. J., 1918, The sea-bottom and its production of fish food, Rep. Dan. Biol. Stn. Board Agric. Copenhagen 25: 1–82.Google Scholar
  97. Peterson, C. H., 1976, Relative abundances of living and dead molluscs in two California lagoons, Lethaia 9: 137–148.Google Scholar
  98. Peterson, C. H., 1977, Competitive organization of the soft-bottom macrobenthic communities of southern California lagoons, Mar. Biol. 43: 343–359.Google Scholar
  99. Peterson, C. H., and Andre, S. V., 1980, An experimental analysis of interspecific competition among marine filter feeders in a soft-sediment environment, Ecology 61: 129–139.Google Scholar
  100. Rees, T. K., 1940, Algal colonization at Mumbles Head, J. Ecol. 28: 403–437.Google Scholar
  101. Rhoads, D. C., 1970, Mass properties, stability, and ecology of marine muds related to burrowing activity, in: Trace Fossils ( R. W. Frey, ed.), pp. 147–160, Springer-Verlag, Berlin.Google Scholar
  102. Rhoads, D. C., 1974, Organism—sediment relations on the muddy sea floor, Oceanogr. Mar. Biol. Annu. Rev. 12: 263–300.Google Scholar
  103. Rhoads, D. C., and Boyer, L. F., 1982, The effects of marine benthos on physical properties of sediments: A successional perspective, in: Animal—Sediment Relations ( P. L. McCall and M. J. S. Tevesz, eds.), pp. 3–52, Plenum Press, New York.Google Scholar
  104. Rhoads, D. C., and Young, D. K., 1970, The influence of deposit-feeding organisms on sediment stability and community trophic structure, J. Mar. Res. 28: 150–178.Google Scholar
  105. Rhoads, D. C., Speden, I. G., and Waage, K. M., 1972, Trophic group analysis of Upper Cretaceous (Maestrichtian) bivalve assemblages from South Dakota, Am. Assoc. Petrol. Geol. Bull. 56: 1100–1113.Google Scholar
  106. Rhoads, D. C., McCall, P. L., and Yingst, J. H., 1978, Disturbance and production on the estuarine seafloor, Am. Sci. 66: 577–586.Google Scholar
  107. Richards, R. P., 1972, Autecology of Richmondian brachiopods (Late Ordovician of Indiana and Ohio), J. Paleontol. 46: 386–405.Google Scholar
  108. Ricketts, E. F., Calvin, J., and Hedgpeth, J. W., 1968, Between Pacific Tides, Stanford University Press, Stanford, Calif.Google Scholar
  109. Riese, K., 1977, Predator exclusion experiments in an intertidal mud flat, Helgol. Wiss. Meeresunters. 30: 263–271.Google Scholar
  110. Robbins, J. A., McCall, P. L., Fisher, J. B., and Krezoski, J. R., 1979, Effect of deposit feeders on migration of 137Cs in lake sediments, Earth Planet. Sci. Lett. 42: 277–287.Google Scholar
  111. Rollins, H. B., Carothers, M., and Donahue, J., 1979, Transgression, regression and fossil community succession, Lethaia 12: 89–104.Google Scholar
  112. Rosenberg, R., 1976, Benthic faunal dynamics during succession following pollution abatement in a Swedish estuary, Oikos 27: 414–427.Google Scholar
  113. Santos, S. L., and Bloom, S. A., 1980, Stability in an annually defaunated estuarine soft-bottom community, Oecologia (Berlin) 46: 290–294.Google Scholar
  114. Santos, S. L., and Simon, J. L., 1980, Marine soft-bottom community establishment following annual defaunation: Larval or adult recruitment, Mar. Ecol. Prog. Ser. 2: 235–241.Google Scholar
  115. Schäfer, W., 1972, Ecology and Paleoecology of Marine Environments, University of Chicago Press, Chicago.Google Scholar
  116. Schindel, D. E., 1980, Microstratigraphic sampling and the limits of paleontologic resolution, Paleobiology 6: 408–426.Google Scholar
  117. Scott, R. W., 1972, Approaches to trophic analysis of paleocommunities, Lethaia 11: 1–14.Google Scholar
  118. Smith, R. L., 1974, Ecology and Field Biology, Harper and Row, New York.Google Scholar
  119. Spurr, S., 1952, The origin of the concept of forest succession, Ecology 33: 426–427.Google Scholar
  120. Surlyk, F., 1972, Morphological adaptations and population structures of the Danish Chalk brachiopods (Maastrichtian, Upper Cretaceous), K. Dan. Vidensk. Selsk. Biol. Skr. 19: 1–57.Google Scholar
  121. Sussman, A. S., 1968, Longevity and survivability of fungi, in: The Fungi: An Advanced Treatise ( G. C. Ainsworth and A. S. Sussman, eds.), Academic Press, New York.Google Scholar
  122. Tansley, A. G., 1935, The use and abuse of vegetational concepts and terms, Ecology 16: 284–307.Google Scholar
  123. Tevesz, M. J. S., and McCall, P. L., 1979, Evolution of substratum preference in bivalves (Mollusca), J. Paleontol. 53: 112–120.Google Scholar
  124. Thayer, C., 1975, Morphologic adaptations of benthic invertebrates to soft substrata, J. Mar. Res. 33: 177–189.Google Scholar
  125. Thayer, C. W., 1979, Biological bulldozers and the evolution of marine benthic communities, Science 203: 458–461.PubMedGoogle Scholar
  126. Thorson, G., 1957, Bottom communities, in: Treatise on Marine Ecology and Paleoecology (J. W. Hedgpeth, ed.), Geol. Soc. Am. Mem. 67: 461–534.Google Scholar
  127. Thorson, G., 1966, Some factors influencing the recruitment and establishment of marine benthic communities, Neth. J. Sea Res. 3: 267–293.Google Scholar
  128. Toomey, D. F., and Cys, J. M., 1979, Community succession in small bioherms of algae and sponges in the Lower Permian of New Mexico, Lethaia 12: 65–74.Google Scholar
  129. Turekian, K. K., Cochran, J. K., Benninger, L. K., and Aller, R. C., 1980, The sources and sinks of nuclides in Long Island Sound, Adv. Geophys. 22: 129–164.Google Scholar
  130. Vermeij, G. J., 1977, The Mesozoic marine revolution: evidence from snails, predators, and grazers, Paleobiology 3: 245–258.Google Scholar
  131. Virnstein, R. W., 1977, The importance of predation by crabs and fishes on benthic infauna in Chesapeake Bay, Ecology 58: 1199–1217.Google Scholar
  132. Virnstein, R. W., 1978, Predator caging experiments in soft sediments: Caution advised, in: Estuarine Interactions ( M. L. Wiley, ed.), pp. 261–273, Academic Press, New York.Google Scholar
  133. Walker, K. R., 1972, Trophic analysis: A method for studying the function of ancient communities, J. Paleontol. 46: 82–93.Google Scholar
  134. Walker, K. R., Laporte, L. F., 1970, Congruent fossil communities from Ordivician and Devonian carbonates of New York, J. Paleontol. 44: 928–944.Google Scholar
  135. Walker, K. R., and Alberstadt, L. P., 1975, Ecological succession as an aspect of structure in fossil communities, Paleobiology 1: 238–257.Google Scholar
  136. Walker, K. R., and Bambach, R. K., 1971, The significance of fossil assemblages from fine-grained sediments: Time-averaged communities, Geol. Soc. Am. Abstr. Progr. 3: 783–784.Google Scholar
  137. Walker, K. R., and Parker, W. C., 1976, Population structure of a pioneer and a later stage species in an Ordovician ecological succession, Paleobiology 2: 191–201.Google Scholar
  138. Warme, J. E., 1969, Live and dead molluscs in a coastal lagoon, J. Paleontol. 43: 141–150.Google Scholar
  139. Williams, W. T., Lance, G. N., Webb, J., Tracey, J. G., and Dale, M. B., 1969, Studies in the numerical analysis of complex rain-forest communities. III. Analysis of successional data, J. Ecol. 57: 515–535.Google Scholar
  140. Wilson, D. P., 1952, The influence of the nature of the substratum on the metamorphosis of the larvae of marine animals, especially the larvae of Ophelia bicornis, Savigny. Ann. Inst. Oceanogr. Monaco 27: 49–156.Google Scholar
  141. Wilson, W. H., Jr., 1981, Sediment-mediated interactions in a densely populated infaunal assemblage: The effects of the polychaete Abarenicola pacifica, J. Mar. Res. 34: 735–748.Google Scholar
  142. Wolff, W. J., Sandee, A. J. J., and deWolf, L., 1977, The development of a benthic ecosystem, Hydrobiologia 52: 107–115.Google Scholar
  143. Woodin, S. A., 1974, Polychaete abundance patterns in a marine soft sediment: The importance of biological interaction, Ecol. Monogr. 44: 171–187.Google Scholar
  144. Woodin, S. A., 1976, Adult—larval interactions in dense infaunal assemblages: Patterns of abundance, J. Mar. Res. 34: 25–41.Google Scholar
  145. Woodin, S. A., 1978, Refuges, disturbance and community structure: A marine soft-bottom example, Ecology 59: 274–284.Google Scholar
  146. Young, D. K., and Young, M. W., 1978, Regulation of species densities of seagrass-associated macrobenthos: Evidence from field experiments in the Indian River estuary, Florida, J. Mar. Res. 36: 569–593.Google Scholar
  147. Young, D. K., Buzas, M. A., and Young, M. W., 1976, Species densities of macrobenthos associated with seagrass: A field experimental study of predation, J. Mar. Res. 34: 577–592.Google Scholar
  148. Ziegler, A. M., Cocks, L. R. M., and Bambach, R. K., 1968, The composition and structure of Lower Silurian marine communities, Lethaia 1: 1–27.Google Scholar

Copyright information

© Springer Science+Business Media New York 1983

Authors and Affiliations

  • Peter L. McCall
    • 1
  • Michael J. S. Tevesz
    • 2
  1. 1.Department of Geological SciencesCase Western Reserve UniversityClevelandUSA
  2. 2.Department of Geological SciencesCleveland State UniversityClevelandUSA

Personalised recommendations