Skip to main content

Diversification, Faunal Change, and Community Replacement during the Ordovician Radiations

  • Chapter

Part of the book series: Topics in Geobiology ((TGBI,volume 3))

Abstract

The Ordovician evolutionary radiations represent a major pivotal point in the history of life on earth. During the few tens of million years between the ends of the Cambrian and Ordovician Periods, the nature of marine faunas was almost completely changed. The trilobite-dominated communities of the Cambrian were replaced by complex suspension-feeding communities dominated by brachiopods, bryozoans, and pelmatozoans, and taxonomic diversity, as seen at both local (i.e., community-wide) and global (i.e., worldwide) levels, was increased two- to threefold. These new faunal patterns then persisted with only minor change for the next 200 m.y. of the Paleozoic. Only two other events in the history of marine faunas had comparable importance: the Vendian to Early Cambrian radiations, which emplaced the first marine fauna, and the Late Permian extinctions, which destroyed the Paleozoic fauna established during the Ordovician and led to the subsequent dominance of the modern marine fauna.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aitken, J. D., 1981, Generalizations about grand cycles, in: Short Papers for the Second International Symposium on the Cambrian System (M. E. Taylor, ed.), pp. 8–14, U.S. Geol. Surv. Open-File Rep. 81–743.

    Google Scholar 

  • Ausich, W. I., and Bottjer, D. J., 1982, Tiering in suspension-feeding communities on soft substrata throughout the Phanerozoic, Science 216: 173–174.

    CAS  PubMed  Google Scholar 

  • Bambach, R. K., 1977, Species richness in marine benthic habitats through the Phanerozoic, Paleobiology 3: 152–167.

    Google Scholar 

  • Bambach, R. K., and Sepkoski, J. J., Jr., 1979, The increasing influence of biologic activity on sedimentary stratification through the Phanerozoic, Geol. Soc. Am. Abstr. Progr. 11: 383.

    Google Scholar 

  • Bayer, T. N., 1965, The Maquoketa Formation in Minnesota and an analysis of its benthonic communities, Ph.D. dissertation, University of Minnesota.

    Google Scholar 

  • Bayer, T. N., 1967, Repetitive benthonic community in the Maquoketa Formation (Ordovician) of Minnesota, J. Paleontol. 41: 417–422.

    Google Scholar 

  • Berry, W. B. N., 1972, Early Ordovician bathyurid province lithofacies, biofacies, and cor-relations—Their relationship to a proto-Atlantic Ocean, Lethaia 5: 69–84.

    Google Scholar 

  • Berry, W. B. N., 1974, Types of Early Paleozoic faunal replacements in North America: Their relationship to environmental change, J. Geol. 82: 371–382.

    Google Scholar 

  • Berry, W. B. N., 1977, Graptolite biostratigraphy: A wedding of classical principles and current concepts, in: Concepts and Methods of Biostratigraphy ( E. G. Kauffman and J. E. Hazel, eds.), pp. 321–338, Dowden, Hutchinson & Ross, Stroudsburg, Pa.

    Google Scholar 

  • Berry, W. B. N., Lawson, D. A., and Yancey, E. S., 1979, Species-diversity patterns in some Middle Ordovician communities from California–Nevada, Palaeogeogr. Palaeoclimatol. Palaeoecol. 26: 99–116.

    Google Scholar 

  • Boucot, A. J., 1975, Evolution and Extinction Rate Controls. Elsevier, Amsterdam.

    Google Scholar 

  • Boucot, A. J., 1978, Community evolution and rates of cladogenesis, Evol. Biol. 11: 545–654

    Google Scholar 

  • Brasier, M. D., 1979, The Cambrian radiation event, in: The Origins of Major Invertebrate Groups ( M. R. House, ed.), pp. 103–159, Academic Press, New York.

    Google Scholar 

  • Bretsky, P. W., 1968, Evolution of Paleozoic marine invertebrate communities, Science 159: 1231–1233.

    CAS  PubMed  Google Scholar 

  • Bretsky, P. W., 1969a, Evolution of Paleozoic benthic marine invertebrate communities, Palaeogeogr. Palaeoclimatol. Palaeoecol. 6: 45–59.

    Google Scholar 

  • Bretsky, P. W., 1969b, Central Appalachian Late Ordovician communities, Geol. Soc. Am. Bull. 80: 193–212.

    Google Scholar 

  • Bretsky, P. W., 1970a, Upper Ordovician ecology of the Central Appalachians, Peabody Mus. Nat. Hist. Yale Univ. Bull. 34: 1–150.

    Google Scholar 

  • Bretsky, P. W., 1970b, Late Ordovician benthic marine communities in north-central New York, N.Y. State Mus. Sci. Serv. Bull. 414: 1–34.

    Google Scholar 

  • Bretsky, P. W., and Lorenz, D. M., 1970, An essay on genetic-adaptive strategies and mass extinctions, Geol. Soc. Am. Bull. 81: 2449–2456.

    Google Scholar 

  • Bretsky, P. W., and Lorenz, D. M., 1971, Adaptive response to environmental stability: A unifying concept in paleoecology, North Am. Paleontol. Cony., 1969, Proc., Part E, pp. 522–550.

    Google Scholar 

  • Bretsky, P. W., Bretsky, S. S., and Schaefer, P. J., 1977, Molluscan and brachiopod dominated biofacies in the Platteville Formation (Middle Ordovician), upper Mississippi Valley, Bull. Geol. Soc. Den. 26: 115–132.

    Google Scholar 

  • Brett, C. E., and Liddell, W. D., 1978, Preservation and paleoecology of a Middle Ordovician hardground community, Paleobiology 4: 329–348.

    Google Scholar 

  • Bright, R. C., 1956, A paleoecologic and biometric study of the Middle Cambrian trilobite Elrathia kingii (Meek), J. Paleontol. 33: 83–98.

    Google Scholar 

  • Brongersma-Sanders, M., 1957, Mass mortality in the sea, Geol. Soc. Am. Mem. 67 (1): 941–1010.

    Google Scholar 

  • Carr, T. R., and Kitchell, J. A., 1980, Dynamics of taxonomic diversity, Paleobiology 6: 427–443.

    Google Scholar 

  • Carson, H. L., 1968, The population flush and its genetic consequences, in: Population Biology and Evolution ( R. C. Lewontin, ed.), pp. 123–137, Syracuse University Press, Syracuse.

    Google Scholar 

  • Case, T. J., and Casten, R. G., 1979, Global stability and multiple domains of attraction in ecological systems, Am. Nat. 113: 705–714.

    Google Scholar 

  • Cisne, J. L., 1973, Beecher’s trilobite bed revisited: Ecology of an Ordovician deepwater fauna, Peabody Mus. Nat. Hist. Yale Univ. Postilla 160.

    Google Scholar 

  • Cisne, J. L., 1974, Evolution of the world fauna of aquatic free-living arthropods, Evolution 28: 337–366.

    Google Scholar 

  • Conway Morris, S., 1979, The Burgess Shale ( Middle Cambrian) fauna, Annu. Rev. Ecol. Syst. 10: 327–349.

    Google Scholar 

  • Cook, H. E., and Taylor, M. E., 1975, Early Paleozoic continental margin sedimentation, trilobite biofacies and the thermocline, western United States, Geology 3: 559–562

    Google Scholar 

  • Cooper, B. N., and Cooper, G. A., 1946, Lower Middle Ordovician stratigraphy of the Shen-andoah Valley, Virginia, Geol. Soc. Am. Bull. 57: 35–113.

    Google Scholar 

  • Cooper, G. A., 1956, Chazyan and related brachiopods, Smithson. Misc. Collect. 127

    Google Scholar 

  • Crick, R. E., 1981, Diversity and evolutionary rates of Cambro-Ordovician nautiloids, Paleobiology 7: 200–215.

    Google Scholar 

  • Crimes, T. P., 1974, Colonization of the early ocean floor, Nature (London) 248: 328–330.

    Google Scholar 

  • Crimes, T. P., 1977, Cambrian trace fossil communities and the progressive colonisation of the ocean floor, J. Paleontol. 51: 8.

    Google Scholar 

  • Dauer, D. M., and Simon, J. L., 1976, Repopulation of the polychaete fauna of an intertidal habitat following natural defaunation: Species equilibrium, Oecologia (Berlin) 22: 99–117.

    Google Scholar 

  • Dimitriyev, V. Y., 1978, Some aspects of the study of changes in the systematic diversity of fossil organisms, Paleontol. J. 12: 257–265.

    Google Scholar 

  • Elles, G. L., 1939, Factors controlling graptolite succession and assemblages, Geol. Mag. 76: 181–187.

    Google Scholar 

  • Firby, J. B., and Durham, J. W., 1974, Molluscan radula from earliest Cambrian, J. Paleontol. 48: 1109–1119.

    Google Scholar 

  • Fisher, D. W., 1956, The Cambrian system of New York State, in: El Sistema Cambrico (J. Rogers, ed.), pp. 321–351, Proc. 20th Int. Geol. Congr., Mexico.

    Google Scholar 

  • Flessa, K. W., 1979, Extinction, in: The Encyclopedia of Paleontology ( R. W. Fairbridge and D. Jablonski, eds.), pp. 300–305, Dowden, Hutchinson & Ross, Stroudsburg, Pa.

    Google Scholar 

  • Fortey, R. A., 1975, Early Ordovician trilobite communities, in: Evolution and Morphology of the Trilobita, Trilobitoidea and Merostomata (A. Martinsson, ed.), pp. 331–352, Fossils Strata No. 4.

    Google Scholar 

  • Fox, W. T., 1968, Quantitative paleoecologic analysis of fossil communities in the Richmond Group, J. Geol. 76: 613–640.

    Google Scholar 

  • Fritz, W. H., 1971, Geological setting of the Burgess Shale, North Am. Paleontol. Cony., 1969, Proc., pp. 1155–1170.

    Google Scholar 

  • Futuyma, D. J., 1973, Community structure and stability in constant environments, Am. Nat. 107: 443–446.

    Google Scholar 

  • Gould, S. J., 1977, Ontogeny and Phylogeny, Belknap Press, Cambridge, Mass.

    Google Scholar 

  • Grant, R. E., 1965, Faunas and stratigraphy of the Snowy Range Formation ( Upper Cambrian) in southwestern Montana and northwestern Wyoming, Geol. Soc. Am. Mem. 96

    Google Scholar 

  • Gunter, G., 1947, Catastrophism in the sea and its paleontologic significance with special reference to the Gulf of Mexico, Am. J. Sci. 245: 669–676.

    Google Scholar 

  • Hayes, B. J. R., 1980, A cluster analysis interpretation of Middle Ordovician biofacies, southern Mackenzie Mountains, Can. J. Earth Sci. 17: 1377–1388.

    Google Scholar 

  • Hoffman, A., 1979, Community paleoecology as an epiphenomenal science, Paleobiology 5: 357–379.

    Google Scholar 

  • House, M. R., 1967, Fluctuations in the evolution of Palaeozoic invertebrates, in: The Fossil Record ( W. B. Harland et al., eds.), pp. 41–54, Geological Society of London, London.

    Google Scholar 

  • Imbrie, J., and Purdy, E. G., 1962, Classification of modern Bahamian carbonate sediments, in: Classification of Carbonate Rocks (W. E. Ham, ed.), pp. 253–272, Am. Assoc. Petrol. Geol. Mem. 1.

    Google Scholar 

  • Jaanusson, V., 1979, Ordovician, in: Treatise on Invertebrate Paleontology, Part A ( R. A. Robison and C. Teichert, eds.), pp. A136 — A166, Geological Society of America and University of Kansas, Lawrence.

    Google Scholar 

  • Jablonski, D., 1980, Apparent versus real biotic effects of transgressions and regressions, Paleobiology 6: 397–407.

    Google Scholar 

  • Jablonski, D., and Valentine, J. W., 1981, Onshore—offshore gradients in Recent eastern Pacific shelf faunas and their paleobiogeographic significance, in: Evolution Today, Proceedings of the Second International Congress of Systematic and Evolutionary Biology ( G. G. E. Scudder and J. L. Reveal, eds.), pp. 441–453, Carnegie—Mellon University, Pittsburgh.

    Google Scholar 

  • Jackson, J. B. C., 1974, Biogeographic consequences of eurytopy and stenotopy among marine bivalves and their evolutionary significance, Am. Nat. 108: 541–560.

    Google Scholar 

  • Johnson, R. G., 1972, Conceptual models of benthic marine communities, in: Models in Paleobiology ( T. J. M. Schopf, ed.), pp. 148–159, Freeman, San Francisco.

    Google Scholar 

  • Kauffman, E. G., 1974, Cretaceous assemblages, communities, and associations: Western Interior, United States and Caribbean Islands, in: Principles of Benthic Community Analysis ( A. M. Ziegler et al. eds.), pp. 121–1227, University of Miami Press, Coral Gables, Fla.

    Google Scholar 

  • Kay, M., 1962, Classification of Ordovician shelly and graptolite sequences from central Nevada, Geol. Soc. Am. Bull. 73: 1421–1430.

    Google Scholar 

  • Kay, M., and Crawford, J. P., 1964, Paleozoic facies from the miogeosynclinal to the eugeo- synclinal belt in thrust slices, central Nevada, Geol. Soc. Am. Bull. 75: 425–454

    Google Scholar 

  • Klovan, J. E., and Imbrie, J., 1971, An algorithm and FORTRAN-IV program for large-scaleQ-mode factor analysis and calculation of factor scores, Math. Geol. 3: 61–77.

    Google Scholar 

  • Kulik, J. W., 1965, Stratigraphy of the Deadwood Formation, Black Hills, South Dakota and Wyoming, M.S. thesis, South Dakota School of Mines and Technology.

    Google Scholar 

  • LaBarbera, M., 1981, The ecology of Mesozoic Gryphaea, Exogyra, and Ilymatogyra (Bivalvia: Mollusca) in a modern ocean, Paleobiology 7: 510–526.

    Google Scholar 

  • Levinton, J. S., 1979, A theory of diversity equilibrium and morphological evolution, Science 204: 335–336.

    CAS  PubMed  Google Scholar 

  • Lochman, C., and Duncan, D., 1944, Early Upper Cambrian faunas of central Montana, Geol. Soc. Am. Spec. Pap. 54: 1–181.

    Google Scholar 

  • Lochman, C., and Hu, C.-H., 1961, Upper Cambrian faunas from the northwest Wind River Mountains, Wyoming: Part II, J. Paleontol. 35: 125–246.

    Google Scholar 

  • Lochman-Balk, C., 1970, Upper Cambrian faunal patterns on the craton, Geol. Soc. Am. Bull. 81: 3197–3224.

    Google Scholar 

  • Lochman-Balk, C., and Wilson, J. L., 1967, Stratigraphy of Upper Cambrian—Lower Ordovician subsurface sequence in Williston Basin, Am. Assoc. Petrol. Geol. Bull. 51: 883–917.

    Google Scholar 

  • Ludvigsen, R., 1975, Ordovician formations and faunas, southern Mackenzie Mountains, Can. J. Earth Sci. 12: 663–697.

    Google Scholar 

  • Ludvigsen, R., 1978, Middle Ordovician trilobite biofacies, southern Mackenzie Mountains, in: Western and Arctic Canadian Biostratigraphy (C. R. Stelck and B. D. E. Chatterton, eds.), pp. 1–37, Geol. Assoc. Can. Spec. Pap. 18.

    Google Scholar 

  • Ludvigsen, R., 1979, A trilobite zonation of Middle Ordovician rocks, southwestern District of Mackenzie, Geol. Surv. Can. Bull. 312: 1–98.

    Google Scholar 

  • MacArthur, R. H., 1969. Patterns of communities in the tropics, Biol. J. Linn. Soc. 1: 19–30

    Google Scholar 

  • MacArthur, R. H., 1972, Geographical Ecology, Harper & Row, New York.

    Google Scholar 

  • McBride, D. J., 1976, Outer shelf communities and trophic groups in the Upper Cambrian of the Great Basin, in: Paleontology and Depositional Environments: Cambrian of Western North America (R. A. Robison and A. J. Rowell. eds.), pp. 139–152, Brigham Young Univ. Geol. Stud. 23(2).

    Google Scholar 

  • McCall, P. L., 1977, Community patterns and adaptive strategies of the infaunal benthos of Long Island Sound, J. Mar. Res. 35: 221–266.

    Google Scholar 

  • McCall, P. L., 1978, Spatial—temporal distributions of Long Island Sound infauna: The role of bottom disturbance in a nearshore marine habitat, in: Estuarine Interactions ( M. L. Wiley, ed.), pp. 191–219, Academic Press, New York.

    Google Scholar 

  • McKee, E. H., Norford, B. S., and Ross, R. J., Jr., 1972, Correlation of the Ordovician shelly facies Orthidiella Zone with zones of the graptolitic facies, Toquima Range, Nevada, and North White River Region, British Columbia, U.S. Geol. Surv. Prof. Pap. 800: 145–156.

    Google Scholar 

  • McKerrow, W. S. (ed.), 1978, The Ecology of Fossils, MIT Press, Cambridge, Mass.

    Google Scholar 

  • Mazzullo, S. J., and Friedman, G. M., 1977, Competitive algal colonization of peritidal flats in a schizohaline environment: The Lower Ordovician of New York, J. Sediment. Petrol. 47: 398–410.

    Google Scholar 

  • Morris, N. J., 1979, On the origin of the Bivalvia, in: The Origin of Major Invertebrate Groups ( M. R. House, ed.), pp. 381–414, Academic Press, New York.

    Google Scholar 

  • Palmer, A. R., 1954, The faunas of the Riley Formation in central Texas, J. Paleontol. 28: 709–786.

    Google Scholar 

  • Palmer, A. R., 1965, Biomere, a new kind of biostratigraphic unit, J. Paleontol. 39: 149–153

    Google Scholar 

  • Palmer, A. R., 1973, Cambrian trilobites, in: Atlas of Palaeobiogeography ( A. Hallam, ed.), pp. 3–11, Elsevier, Amsterdam.

    Google Scholar 

  • Palmer, A. R., 1979, Cambrian, in: Treatise on Invertebrate Paleontology, Part A ( R. A. Robison and C. Teichert, eds.), pp. A119 - A135, Geological Society of America and University of Kansas, Lawrence.

    Google Scholar 

  • Palmer, A. R., 1982, Biomere boundaries: A possible test for extraterrestrial perturbation of the biosphere, in: Geological Implications of the Impact of Large Asteroids and Comets on the Earth (L. T. Silver and P. H. Schultz, eds.), Geol. Soc. Am. Spec. Pap. 190: 469–476.

    Google Scholar 

  • Palmer, A. R., and Campbell, D. P., 1976, Biostratigraphic implications of trilobite biofacies: Albertella Zone, Middle Cambrian, western United States, in: Paleontology and Depositional Environments: Cambrian of Western North America (R. A. Robison and A. J. Rowell, eds.), pp. 39–50, Brigham Young Univ. Geol. Stud. 23(2).

    Google Scholar 

  • Palmer, A. R., and Halley, R. B., 1979, Physical stratigraphy and trilobite biostratigraphy of the Carrara Formation (Lower and Middle Cambrian) in the southern Great Basin, U.S. Geol. Surv. Prof. Pap. 1047: 1–131.

    Google Scholar 

  • Parker, W. C., 1983, Fossil ecological succession in Paleozoic level bottom brachiopodbryozoan communities, Ph.D. dissertation, University of Chicago.

    Google Scholar 

  • Percival, I. G., 1978, Inarticulate brachiopods from the Late Ordovician of New South Wales, and their palaeoecological significance, Alcheringa 2: 117–141.

    Google Scholar 

  • Pojeta, J., Jr., 1981, Paleontology of Cambrian mollusks, in: Short Papers for the Second International Symposium on the Cambrian System (M. E. Taylor, ed.), pp. 163–166, U.S. Geol. Surv. Open-File Rep. 81–743.

    Google Scholar 

  • Raup, D. M., 1976, Species diversity in the Phanerozoic: A tabulation, Paleobiology 2: 279–288.

    Google Scholar 

  • Raup, D. M., and Sepkoski, J. J., Jr., 1982, Mass extinctions in the marine fossil record, Science 215: 1501–1503.

    CAS  PubMed  Google Scholar 

  • Raup, D. M., Gould, S. J., Schopf, T. J. M., and Simberloff, D. S., 1973, Stochastic models of phylogeny and the evolution of diversity, J. Geol. 81: 525–542.

    Google Scholar 

  • Read, J. F., 1980, Carbonate ramp-to-basin transitions and foreland basin evolution, Middle Ordovician, Virginia Appalachians, Am. Assoc. Petrol. Geol. Bull. 64: 1575–1612

    Google Scholar 

  • Resser, C. E., and Howell, B. F., 1938, Lower Cambrian Olenellus Zone of the Appalachians, Geol. Soc. Am. Bull. 49: 195–248.

    Google Scholar 

  • Richards, R. P., 1972, Autecology of Richmondian brachiopods (Late Ordovician) of Indiana and Ohio, J. Paleontol. 46: 386–405.

    Google Scholar 

  • Robison, R. A., 1971, Additional Middle Cambrian trilobites from the Wheeler Shale of Utah, J. Paleontol. 45: 796–804.

    Google Scholar 

  • Rosenzweig, M. L., 1975, On continental steady states of species diversity, in: Ecology and Evolution of Communities ( M. L. Cody and J. M. Diamond, eds.), pp. 121–140, Belknap Press, Cambridge, Mass.

    Google Scholar 

  • Ross, R. J., Jr., 1949, Stratigraphy and trilobite faunal zones of the Garden City Formation, northeastern Utah, Am. J. Sci. 247: 472–491.

    Google Scholar 

  • Ross, R. J., Jr., 1951, Stratigraphy of the Garden City Formation in northeastern Utah and its trilobite faunas, Peabody Mus. Nat. Hist. Yale Univ. Bull. 6.

    Google Scholar 

  • Ross, R. J., Jr., 1967, Some Middle Ordovician brachiopods and trilobites from the Basin Ranges, western United States, U.S. Geol. Surv. Prof. Pap. 523D: D1 — D43.

    Google Scholar 

  • Ross, R. J., Jr., 1968, Brachiopods from the upper part of the Garden City Formation (Or-dovician) north-central Utah, U.S. Geol. Sun’. Prof. Pap. 593: H1 — H13.

    Google Scholar 

  • Ross, R. J., Jr., 1970, Ordovician brachiopods, trilobites, and stratigraphy in eastern and central Nevada, U.S. Geol. Surv. Prof. Pap. 639: 1–103.

    Google Scholar 

  • Ross, R. J., Jr., 1975, Early Paleozoic trilobites, sedimentary facies, lithospheric plates, and ocean currents, in: Evolution and Morphology of the Trilobita, Trilobitoidea, and Merostomata (A. Martinsson, ed.), pp. 307–330, Fossils Strata No. 4.

    Google Scholar 

  • Ross, R. J., Jr., 1976, Ordovician sedimentation in the western United States, in: The Ordovician System ( M. G. Bassett, ed.), University of Wales Press and National Museum of Wales, Cardiff.

    Google Scholar 

  • Ross, R. J., Jr., and Shaw, F. C., 1972, Distribution of the Middle Ordovician Copenhagen Formation and its trilobites in Nevada, U.S. Geol. Surv. Prof. Pap. 749.

    Google Scholar 

  • Ross, R. J., Jr., Nolan, T. B., and Harris, A. G., 1979, The Upper Ordovician and Silurian Hanson Creek Formation of central Nevada, U.S. Geol. Surv. Prof. Pap. 1126-C.

    Google Scholar 

  • Runnegar, B., 1981, Biostratigraphy of Cambrian mollusks, in: Short Papers for the Second International Symposium on the Cambrian System (M. E. Taylor, ed.), pp. 198–202, U.S. Geol. Surv. Open-File Rep. 81–743.

    Google Scholar 

  • Runnegar, B., Pojeta, J., Jr., Taylor, M. E., and Collins, D., 1979, New species of the Cambrian and Ordovician chitons Matthevia and Chelodes from Wisconsin and Queensland: Evidence for the early history of polyplacophoran molluscs, 1. Paleontol. 53: 1374–1394.

    Google Scholar 

  • Sanders, H. L., 1968, Marine benthic diversity: A comparative study, Am. Nat. 102: 243–282.

    Google Scholar 

  • Sando, W. J., 1957, Beekmantown Group (Lower Ordovician) of Maryland, Geol. Soc. Am. Mem. 68.

    Google Scholar 

  • Schopf, T. J. M., 1980, Paleoceanography, Harvard University Press, Cambridge Mass. Scotese, C. R., Bambach, R. K., Barton, C., Van der Voo, R., and Ziegler, A. M., 1979, Paleozoic base maps, J. Geol. 87: 217–277.

    Google Scholar 

  • Seilacher, A., 1974, Flysch trace fossils: Evolution of behavioral diversity in the deep-sea, Neues Jahrb. Geol. Paläontol. Monatsh. 4: 233–245.

    Google Scholar 

  • Sepkoski, J. J., Jr., 1974, Quantified coefficients of association and measurement of similarity, Math. Geol. 6: 135–152.

    Google Scholar 

  • Sepkoski, J. J., Jr., 1978, A kinetic model of Phanerozoic taxonomic diversity. I. Analysis of marine orders, Paleobiology 4: 223–251.

    Google Scholar 

  • Sepkoski, J. J., Jr., 1979, A kinetic model of Phanerozoic taxonomic diversity. II. Early Phanerozoic families and multiple equilibria, Paleobiology 5: 222–251.

    Google Scholar 

  • Sepkoski, J. J., Jr., 1981a, A factor analytic description of the Phanerozoic marine fossil record, Paleobiology 7: 36–53.

    Google Scholar 

  • Sepkoski, J. J., Jr., 1981b, The uniqueness of the Cambrian fauna, in: Short Papers for the Second International Symposium on the Cambrian System (M. E. Taylor, ed.), pp. 203–207, U.S. Geol. Surv. Open-File Rep. 81–743.

    Google Scholar 

  • Sepkoski, J. J., Jr., 1982a, Mass extinctions in the Phanerozoic oceans: A review, in: Geological Implications of the Impact of Large Asteroids and Comets on the Earth (L. T. Silver and P. H. Schultz, eds.), Geol. Soc. Am. Spec. Pap. 190: 283–290.

    Google Scholar 

  • Sepkoski, J. J., Jr., 1982b, Flat-pebble conglomerates, storm deposits. and the Cambrian bot-tom fauna, in: Cyclic and Event Stratification ( G. Einsele and A. Seilacher, eds.), pp. 371–385, Springer-Verlag, Berlin.

    Google Scholar 

  • Sepkoski, J. J., Jr., 1982c, A compendium of marine fossil families, Milwaukee Public Mus. Contrib. Biol. Geol. No. 51.

    Google Scholar 

  • Sepkoski, J. J., Jr., and Miller, A. I., 1982, Large-scale patterns of community evolution in the Paleozoic oceans, Geol. Soc. Am. Abstr. Progr. 14: 287.

    Google Scholar 

  • Sepkoski, J. J., Jr., Bambach, R. K., Raup, D. M., and Valentine, J. W., 1981, Phanerozoic marine diversity and the fossil record, Nature (London) 293: 435–437.

    Google Scholar 

  • Sheehan, P. M., 1973, The relation of Late Ordovician glaciation to the Ordovician–Silurian changeover in North American brachiopod faunas, Lethaia 6: 147–154.

    Google Scholar 

  • Sheehan, P. M., 1975, Brachiopod synecology in a time of crisis (Late Ordovician–Early Silurian), Paleobiology 1: 205–212.

    Google Scholar 

  • Sheehan, P. M., 1979, Swedish Late Ordovician marine benthic assemblages and their bearing on brachiopod zoogeography, in: Historical Biogeography, Plate Tectonics, and the Changing Environment ( J. Gray and A. J. Boucot, eds.), pp. 61–73, Oregon State University Press, Corvallis.

    Google Scholar 

  • Sheehan, P. M., 1981, Biogeographic evidence for structure in Ordovician communities, Geol. Soc. Am. Abstr. Progr. 13: 316.

    Google Scholar 

  • Simberloff, D. S., 1974, Equilibrium theory of island biogeography and ecology, Annu. Rev. Ecol. Syst. 5: 161–182.

    Google Scholar 

  • Sloss, L. L., 1963, Sequences in the cratonic interior of North America, Geol. Soc. Am. Bull. 74: 93–114.

    Google Scholar 

  • Sneath, P. H. A., and Sokal, R. R., 1973, Numerical Taxonomy, Freeman, San Francisco. Stanley, S. M., 1968, Post-Paleozoic adaptive radiation of infaunal bivalve molluscs—A consequence of mantle fusion and siphon formation, J. Paleontol. 42: 214–229.

    Google Scholar 

  • Stanley, S. M., 1970, Relation of shell form to life habits in the Bivalvia, Geol. Soc. Am. Mem. 125.

    Google Scholar 

  • Stanley, S. M., 1972, Functional morphology and evolution of byssally attached bivalve molluscs, J. Paleontol. 46: 165–212.

    Google Scholar 

  • Stanley, S. M., 1977, Trends, rates, and patterns of evolution in the Bivalvia, in: Patterns of Evolution ( A. Hallam, ed.), pp. 209–250, Elsevier, Amsterdam.

    Google Scholar 

  • Stanley, S. M., 1979, Macroevolution: Pattern and Process, Freeman, San Francisco.

    Google Scholar 

  • Stanley, S. M., Signor, R. W., III, Lidgard, S.. and Karr, A. F., 1981, Natural clades differ from “random” clades: Simulations and analysis, Paleobiology 7: 115–127.

    Google Scholar 

  • Steele-Petrovic, M., 1979, The physiological differences between articulate brachiopods and filter-feeding bivalves as a factor in the evolution of marine level-bottom communities, Palaeontology 22: 101–134.

    Google Scholar 

  • Stinchcomb, B. L., 1975, Paleoecology of two new species of Late Cambrian Hypseloconus (Monoplacophora) from Missouri, J. Paleontol. 49: 416–421.

    Google Scholar 

  • Stitt, J. H., 1971, Repeating evolutionary pattern in Late Cambrian trilobite biomeres, J. Paleontol. 45: 178–181.

    Google Scholar 

  • Sutherland, J. P., 1974, Multiple stable points in natural communities, Am. Nat. 108: 859–873.

    Google Scholar 

  • Taylor, M. E., 1977, Late Cambrian of western North America: Trilobite biofacies, environmental significance, and biostratigraphic implications, in: Concepts and Methods of Biostratigraphy ( E. G. Kauffman and J. E. Hazel, eds.), pp. 397–426, Dowden, Hutchinson & Ross, Stroudsburg, Pa.

    Google Scholar 

  • Taylor, M. E., and Halley, R. B., 1974, Systematics, environment, and biogeography of some Late Cambrian and Early Ordovician trilobites from eastern New York State, U.S. Geol. Surv. Prof. Pap. 834: 1–38.

    Google Scholar 

  • Thayer, C. W., 1979, Biological bulldozers and the evolution of marine benthic communities, Science 203: 458–461.

    CAS  PubMed  Google Scholar 

  • Titus, R., and Cameron, B., 1976, Fossil communities of the lower Trenton Group (Middle Ordovician) of central and northwestern New York State, J. Paleontol. 50: 1209–1225.

    Google Scholar 

  • Vail, P. R., Mitchum, R. H., Jr., and Thompson, S., III, 1977, Seismic stratigraphy and global changes of sea level. Part 4. Global cycles of relative changes of sea level, in: Seismic Stratigraphy—Applications to Hydrocarbon Exploration (C. E. Payton, ed.), pp. 83–97, Am. Assoc. Petrol. Geol. Mem. 26.

    Google Scholar 

  • Valentine, J. W., 1973, Evolutionary Paleoecology of the Marine Biosphere, Prentice–Hall, Englewood Cliffs, N.J.

    Google Scholar 

  • Vermeij, G. J., 1977, The Mesozoic marine revolution: Evidence from snails, predators, and grazers, Paleobiology 3: 245–258.

    Google Scholar 

  • Vermeij, G. J., 1978, Biogeography and Adaptation, Harvard University Press, Cambridge, Mass.

    Google Scholar 

  • Waddington, J. B., 1980, A soft substrate community with edrioasteroids, from the Verulam Formation (Middle Ordovician) at Gamebridge, Ontario, Can. J. Earth Sci. 17: 674–679

    Google Scholar 

  • Walker, K. R., 1972a, Community ecology of the Middle Ordovician Black River Group of New York State, Geol. Soc. Am. Bull. 83: 2499–2524.

    Google Scholar 

  • Walker, K. R., 1972b, Trophic analysis: A method for studying the function of ancient communities, J. Paleontol. 46: 82–93.

    Google Scholar 

  • Walker, K. R., and Parker, W. C., 1976, Population structure of a pioneer and a later stage species in an Ordovician ecological succession, Paleobiology 2: 191–201.

    Google Scholar 

  • Walker, K. R., Broadhead, T. W., and Keller, F. B., 1980, Middle Ordovician carbonate shelf to deep water basin deposition in the southern Appalachians, Univ. Tenn. Dept. Geol. Sci. Stud. Geol. 4.

    Google Scholar 

  • Wassersug, R. J., Yang, H., Sepkoski, J. J., Jr., and Raup, D. M., 1979, The evolution of body size on islands: A computer simulation, Am. Nat. 114: 287–295.

    Google Scholar 

  • Watkins, R., Berry, W. B. N., and Boucot, A. J., 1973, Why “communities”?, Geology 1: 5560.

    Google Scholar 

  • West, R. R., 1976, Comparison of seven lingulid communities, in: Structure and Classification of Paleocommunities ( R. W. Scott and R. R. West, eds.), pp. 171–192, Dowden, Hutchinson & Ross, Stroudsburg, Pa.

    Google Scholar 

  • Whittaker, R. H., 1972, Evolution and measurement of species diversity, Taxon 21: 213–251

    Google Scholar 

  • Whittaker, R. H., 1975, Communities and Ecosystems, 2nd ed., Macmillan Co., New York

    Google Scholar 

  • Willoughby, R., 1976, Lower and Middle Cambrian fossils from the Shady Formation, Aus-tinville, Virginia, Geol. Soc. Am. Abstr. Progr. 8: 301–302.

    Google Scholar 

  • Wilson, D. S., 1980, The Natural Selection of Populations and Communities, Benjamin/ Cummings, Menlo Park, Calif.

    Google Scholar 

  • Wilson, E. O., 1969, The species equilibrium, in: Diversity and Stability in Ecological Systems, pp. 38–47, Brookhaven Symp. Biol. No. 22.

    Google Scholar 

  • Ziegler, A. M., Bambach, R. K., Parrish, J. T., Barret, S. F., Gierlowski, E. H., Parker, W. C., Raymond, A., and Sepkoski, J. L. Jr., 1981, Paleozoic biogeography and climatology, in: Paleobotany, Paleoecology, and Evolution ( K. J. Niklas, ed.), pp. 231–266, Praeger, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sepkoski, J.J., Sheehan, P.M. (1983). Diversification, Faunal Change, and Community Replacement during the Ordovician Radiations. In: Tevesz, M.J.S., McCall, P.L. (eds) Biotic Interactions in Recent and Fossil Benthic Communities. Topics in Geobiology, vol 3. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0740-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0740-3_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0742-7

  • Online ISBN: 978-1-4757-0740-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics