The Evolution of Infaunal Communities and Sedimentary Fabrics

  • David W. Larson
  • Donald C. Rhoads
Part of the Topics in Geobiology book series (TGBI, volume 3)


Mobile infauna are prominent members of modern benthic communities inhabiting granular substrata. In settings below normal wavebase, the benthic fauna is dominated by infaunal deposit-feeders (McCall, 1977; Rhoads et al., 1978), and the substratum is characterized by bioturbated sedimentary fabrics (Moore and Scruton, 1957; Rhoads, 1974). Habitats subjected to wave reworking contain fewer deposit-feeders and retain physical sedimentary fabrics. The increase of biogenic sediment-reworking on an onshore-to-offshore gradient is widespread on modern marine shelves dominated by detrital clastics (Moore and Scruton, 1957; Reineck, 1967; Howard and Reineck, 1972, 1981) or carbonates (Ginsburg and James, 1974; James and Ginsburg, 1979) and has proven useful in reconstructing bathymetric gradients in ancient sedimentary basins (Byers, 1977; Byers and Larson, 1979).


Benthic Community Trace Fossil Benthic Fauna Sedimentary Fabric Lower Devonian 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Antia, D. D. J., 1980, Shell laminae and shell orientation in the Upper Silurian, Overton Formation, United Kingdom, Palaeogeogr. Palaeoclimatol. Palaeoecol. 32: 119–133.CrossRefGoogle Scholar
  2. Ausich, W. I., and Bottjer, D. J., 1982, Tiering of soft substrata suspension-feeding communities through the Phanerozoic, Science 216: 173–174.PubMedCrossRefGoogle Scholar
  3. Bambach, R. K., 1977, Species richness in marine benthic habitats through the Phanerozoic, Paleobiology 3: 152–167.Google Scholar
  4. Bambach, R. K., 1979, The increasing influence of biologic activity on sedimentary stratification through the Phanerozoic, Geol. Soc. Am. Abstr. Progr. 11: 383.Google Scholar
  5. Bowen, Z. P., Rhoads, D. C., and McAlester, A. L., 1974, Marine benthic communities in the Upper Devonian of New York, Lethaia 7: 93–120.CrossRefGoogle Scholar
  6. Brenchley, G. A., 1981, Disturbance and community structure: An experimental study of bioturbation in marine soft-bottom environments, J. Mar. Res. 39: 767–790.Google Scholar
  7. Bretsky, P. W., 1969, Central Appalachian Late Ordovician communities, Bull. Geol. Soc. Am. 80: 193–212.CrossRefGoogle Scholar
  8. Byers, C. W., 1974, Shale fissility: Relation to bioturbation, Sedimentology 21: 479–484.CrossRefGoogle Scholar
  9. Byers, C. W., 1977, Biofacies patterns in euxinic basins: A general model, in: Deep-Water Carbonate Environments (H. E. Cook and P. Enos, eds.), Soc. Econ. Paleontol. Mineral. Spec. Publ. 25: 5–17.Google Scholar
  10. Byers, C. W., and Larson, D. W., 1979, Paleoenvironments of Mowry Shale (Lower Cretaceous), western and central Wyoming, Am. Assoc. Petrol. Geol. Bull. 63: 354–361.Google Scholar
  11. Crimes, T. P., 1974, Colonisation of the early ocean floor, Nature (London) 248: 328–330.CrossRefGoogle Scholar
  12. Garrett, P., 1970, Phanerozoic stromatolites: Noncompetitive ecologic restriction by grazingand burrowing animals, Science 169: 171–173.PubMedCrossRefGoogle Scholar
  13. Ginsburg, R. N., and James, N. L., 1974, Holocene carbonate sediments of continental shelves, in: Geology of Continental Margins ( C. A. Burk and C. L. Drake, eds.), pp. 137–155, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  14. Howard, J. D., and Reineck, H.-E., 1972, Georgia coastal region, Sapelo Island, U.S.A. Sedimentology and biology. IV. Physical and biogenic sedimentary structures of the near-shore shelf, Senckenbergiana Marit. 4: 81–123.Google Scholar
  15. Howard, J. D., and Reineck, H.-E., 1981, Depositional facies of high-energy beach-to-offshore sequence: comparison with low-energy sequence, Am. Assoc. Petrol. Geol. Bull. 65: 807–830.Google Scholar
  16. James, N. L., and Ginsburg, R. N., 1979, The Seaward Margin of Belize Barrier and Atoll Reefs, Blackwell, Oxford.Google Scholar
  17. Kay, G. M., 1937, Stratigraphy of the Trenton Group, Bull. Geol. Soc. Am. 48:233–302.Google Scholar
  18. Kay, G. M., 1968, Ordovician formations in northwestern New York, Nat. Can. 95:1373–1378.Google Scholar
  19. Kreisa, R. D., 1981, Storm generated sedimentary structures in the subtidal marine facies with examples from the Middle and Upper Ordovician of southwestern Virginia, J. Sediment. Petrol. 51: 823–848.Google Scholar
  20. Lane, N. G., 1963, The Berkeley crinoid collection from Crawfordsville, Indiana, J. Paleontol. 37: 1001–1008.Google Scholar
  21. Laporte, L. F., 1969, Recognition of a transgressive carbonate sequence within an epeiric sea: Helderberg Group (Lower Devonian) of New York State, in: Depositional Environments in Carbonate Rocks, Soc. Econ. Paleontol. Mineral. Spec. Publ. 14: 98–119.Google Scholar
  22. Laporte, L. F., 1971, Paleozoic carbonate facies of the central Appalachian shelf, J. Sediment. Petrol. 41: 724–740.Google Scholar
  23. Larson, D. W., in prep. Paleoecology of Middle Ordovician benthic faunas, Ph.D. dissertation, Yale University.Google Scholar
  24. McCall, P. L., 1977, Community patterns and adaptive strategies of the infaunal benthos of Long Island Sound, J. Mar. Res. 35: 221–266.Google Scholar
  25. McGhee, G. R., Jr., 1976, Late Devonian benthic communities of the central Appalachian Allegheny Front, Lethaia 9: 111–136.CrossRefGoogle Scholar
  26. Markello, J. R., and Read, J. F., 1981, Carbonate ramp-to-deeper shale shelf transitions of the Upper Cambrian intrashelf basin, Nolichucky Formation, southwest Virginia Appalachians, Sedimentology 28: 573–598.CrossRefGoogle Scholar
  27. Moore, D. G., and Scruton, P. C., 1957, Minor internal structures of some recent unconsolidated sediments, Bull. Am. Assoc. Petrol. Geol. 41: 2723–2751.Google Scholar
  28. Osgood, R. G., 1970, Trace fossils of the Cincinnati area, Paleontogr. Am. 6: 281–444.Google Scholar
  29. Reineck, H.-E., 1967, Layered sediments of tidal flats, beaches, and shelf bottoms of the North Sea, in: Estuaries (G. H. Lauff, ed.), pp. 191–206. American Association for the Advancement of Science, Publication 83.Google Scholar
  30. Rhoads, D. C., 1974, Organism—sediment relations on the muddy sea floor, Oceanogr. Mar. Biol. Ann. Rev. 12: 263–300.Google Scholar
  31. Rhoads, D. C., and Boyer, L. F.. 1982, The effects of marine benthos on physical properties of sediments: A successional perspective, in: Animal–Sediment Interactions ( P. L. McCall and M. J. S. Tevesz, eds.), pp. 3–52, Plenum Press, New York.Google Scholar
  32. Rhoads, D. C., and Morse, J., 1971, Evolutionary and ecologic significance of oxygen deficient marine basins, Lethaia 4: 413–428.CrossRefGoogle Scholar
  33. Rhoads, D. C., and Young, D. K., 1970, The influence of deposit-feeding organisms on sediment stability and community trophic structure, J. Mar. Res. 28: 150–178.Google Scholar
  34. Rhoads, D. C., McCall, P. L., and Yingst, J. L., 1978, Disturbance and production on the estuarine seafloor, Am. Sci. 66: 577–586.Google Scholar
  35. Rickard, L. V., 1962, Late Cayugan (Upper Silurian) and Helderbergian ( Lower Devonian) stratigraphy in New York, N.Y. State Mus. Sci. Serv. Bull. 386.Google Scholar
  36. Schäfer, W., 1972, Ecology and Palaeoecology of Marine Environments, University of Chicago Press, Chicago.Google Scholar
  37. Seilacher, A., 1953, Studien zur Palichnologie. I. Über die Methoden der Palichnologie, Neues Jahrb. Geol. Paleontol. Abh. 96: 421–452.Google Scholar
  38. Seilacher, A., 1974, Flysch trace fossils: Evolution of behavioural diversity in the deep-sea, Neues Jahrb. Geol. Palaeontol. Monatsh. 4: 233–245.Google Scholar
  39. Seilacher, A., 1977, Evolution of trace fossil communities, in: Patterns of Evolution ( A. Hallam, ed.), pp. 359–376, Elsevier, Amsterdam.Google Scholar
  40. Sepkoski, J. J., Jr., 1981, A factor analytic description of the Phanerozoic marine fossil record, Paleobiology 7: 36–53.Google Scholar
  41. Sepkoski, J. J., Jr., 1982, Flat-pebble conglomerates, storm deposits, and the Cambrian bottom fauna, in: Cyclic and Event Stratification (G. Einsele and A. Seilacher, eds.), pp. 371385, Springer-Verlag, Berlin.Google Scholar
  42. Sepkoski, J. J., Jr., and Bambach, R. K., 1979, The temporal restriction of flat-pebble conglomerates: An example of co-evolution of organisms and sediments, Geol. Soc. Am. Abstr. Progr. 11: 256.Google Scholar
  43. Stanley, S. M., 1968, Post-Paleozoic adaptive radiation of infaunal bivalve mollusks—A consequence of mantle fusion and siphon formation, J. Paleontol. 42: 214–229.Google Scholar
  44. Thayer, C. W., 1979, Biological bulldozers and the evolution of marine benthic communities, Science 203: 458–461.PubMedCrossRefGoogle Scholar
  45. Titus, R., and Cameron, B., 1976, Fossil communities of the lower Trenton Group (Middle Ordovician) of central and northwestern New York State, J. Paleontol. 50: 1209–1225.Google Scholar
  46. Vermeij, G. J., 1977, The Mesozoic marine revolution: Evidence from snails, predators, and grazers, Paleobiology 3: 245–258.Google Scholar
  47. Walker, K. R., and Laporte, L. F., 1970, Congruent fossil communities from Ordovician and Devonian carbonates of New York, J. Paleontol. 44: 928–944.Google Scholar
  48. Walker, K. R., and Parker, W. C., 1976, Population structure of a pioneer and a later stage species in an Ordovician ecological succession, Paleobiology 2: 191–201.Google Scholar
  49. Walker, K. R., Broadhead, T. W., and Keller, F. B. (eds.), 1980, Middle Ordovician carbonate shelf to deep water basin deposition in the southern Appalachians [field trip guide], Univ. Tenn. Dept. Geol. Stud. Geol. No. 4.Google Scholar
  50. Yingst, J. Y., and Rhoads, D. C., 1979, The role of bioturbation in the enhancement of bacterial growth rates in marine sediments, in: Marine Benthic Dynamics ( K. R. Tenore and B. C. Coull, eds.), pp. 407–421, University of South Carolina Press, Columbia.Google Scholar

Copyright information

© Springer Science+Business Media New York 1983

Authors and Affiliations

  • David W. Larson
    • 1
  • Donald C. Rhoads
    • 2
  1. 1.Department of GeologyFranklin and Marshall CollegeLancasterUSA
  2. 2.Department of Geology and GeophysicsYale UniversityNew HavenUSA

Personalised recommendations