Advertisement

Hormonal Control of Glycogen Metabolism

  • J. Larner
  • P. J. Roach
  • L. C. Huang
  • G. Brooker
  • F. Murad
  • R. Hazen
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 111)

Abstract

It is now recognized that both glycogen synthesis and degradation are controlled by covalent modification as well as by soluble cellular effectors. In general, it appears that only the hormonal controls are exerted through covalent phosphorylation and dephosphorylation. By this mechanism one cell type, the endocrine cell, communicates with another cell type, the target cell. The soluble cellular effectors appear to be influenced by nonhormonal as well as hormonal stimuli.

Keywords

Insulin Action Glycogen Synthesis Hormonal Control Glycogen Metabolism Uridine Diphosphate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Avruch, J., Leone, G.R., and Martin, D.B. (1976). Effects of epinephrine and insulin on phosphopeptide metabolism in adipocytes. J. Biol. Chem. 251: 1511–1515.PubMedGoogle Scholar
  2. Benjamin, W.B. and Singer, I. (1975). Actions of insulin, epinephrine, and dibutyryl cyclic adenosine 5’-monophosphate on fat cell protein phosphorylations, cyclic adenosine 5’-monophosphate dependent and independent mechanisms. Biochemistry 14: 3301–3309.PubMedCrossRefGoogle Scholar
  3. Bishop, J.S. (1970). Inability of insulin to activate liver glycogen transferase D phosphatase in the diabetic pancreatectomized dog. Biochim. Biophys. Acta 208: 208–218.PubMedCrossRefGoogle Scholar
  4. Bishop, J.S. and Larner, J. (1967). Rapid activation-inactivation of liver uridine diphosphate glucose-glycogen transferase and phosphorylase by insulin and glucagon in vivo. J. Biol. Chem. 242: 1355–1356.Google Scholar
  5. Butcher, R.W., Sneyd, J.G.T., Park, C.R., and Sutherland, E.W. Jr. (1966). Effect of insulin on adenosine 3’,5’-monophosphate in the rat epididymal fat pad. J. Biol. Chem. 241: 1651–1653.PubMedGoogle Scholar
  6. Clausen, T., Elbrink, J., and Dahl-Hansen, A.G. (1975). The re- lationship between the transport of glucose and cations across cell membranes in isolated tissues. Biochim. Biophys. Acta 375: 292–308.PubMedCrossRefGoogle Scholar
  7. Craig, J.W. and Larner, J. (1964). Influence of epinephrine and insulin on uridine di phosphate glucose-a-glucan transferase and phosphorylase in muscle. Nature 202: 971–973.PubMedCrossRefGoogle Scholar
  8. Craig, J.W., Rall, T.W., and Larner, J. (1969). The influence of insulin and epinephrine on adenosine 3’,5’-phosphate and glycogen transferase in muscle. Biochim. Biophys. Acta 177: 213219.Google Scholar
  9. Fain, J.N. (1974). Mode of action of insulin. pp. 1–23. In: H.V. Rickenberg (Ed.) Biochemistry of Hormones, Vol. 8.Google Scholar
  10. Fain, J.N. and Butcher, F.R. (1976). Cyclic guanosine 3’,5’-mono- phosphate and the regulation of lipolysis in rat fat cells. J. Cyclic Nuci. Res. 2: 71–78.Google Scholar
  11. Friedman, D.L. and Larner, J. (1963). Studies on UDPG-glucan transferase. III. Interconversion of two forms of UDPG-glucan transferase by a phosphorylation-dephosphorylation reaction sequence. Biochemistry 2: 669–675.PubMedCrossRefGoogle Scholar
  12. Gold, A.H. (1970). The effect of diabetes and insulin on liver glycogen synthetase activation. J. Biol. Chem. 245: 903–905.PubMedGoogle Scholar
  13. Goldberg, N.D., Dietz, S.B., and O’Toole, A.G. (1969). Cyclic quanosine 3’,5’-monophosphate in mammalian tissues and urine. J. Biol. Chem. 244: 4458–4466.PubMedGoogle Scholar
  14. Goldberg, N.D., Villar-Palasi, C., Sasko, H., and Larner, J. (1967). Effects of insulin treatment on muscle 3’,5’-cyclic adenylate levels in vivo and in vitro. Biochim. Biophys. Acta 148: 665672.Google Scholar
  15. Illiano, T., Tell, G.P.E., Siegel, M.I., and Cuatrecasas, P. (1973). Guanosine 3’,5’-cyclic monophosphate and the action of insulin and acetylcholine. Proc. Nat’l. Acad. Sci. U.S.A. 70: 2443 2447.Google Scholar
  16. Jarett, L., Steiner, A.L., Smith, R.M., and Kipnis, D.M. (1972). The involvement of cyclic AMP in the hormonal regulation of protein synthesis in rat adipocytes. Endocrinology 90: 1277 1284.Google Scholar
  17. Kissebah, A.H., Hope-Gill, H., Vydelingum, N., Tulloch, B.R., Clark, P.V., and Fraser, T.R. (1975). Mode of insulin action. Lancet 1: 144–147.PubMedCrossRefGoogle Scholar
  18. Kono, T. and Barham, F.W. (1973). Effects of insulin on the levels of adenosine 3’,5’-monophosphate and lipolysis in isolated rat epididymal fat cells. J. Biol. Chem. 248: 7417–7426.PubMedGoogle Scholar
  19. Krebs, E.G. (1972). Protein kinases. pp. 99–133. In: B.L. HorecKer and E.R. Stadtman (Eds.) Current Topics in Cellular Regulation, Vol. 5. Academic Press, New York.Google Scholar
  20. Kumon, A., Nishizuka, K., Yamamura, H., and Nishizuka, Y. (1972). Multiplicity of adenosine 3’,5’-monophosphate-dependent protein kinases from rat liver and mode of action of nucleoside 3’,5’-monophosphate. J. BioZ. Chem. 247: 3726–3735.Google Scholar
  21. Larner, J. (1972). Insulin and glycogen synthase. Diabetes 21: Suppl. 2: 428–438.Google Scholar
  22. Larner, J., Huang, L.C., Brooker, G., Murad, F., and Miller, T.B. (1974). Inhibitor of protein kinase formed in insulin treated muscle. FEBS Lett. 33: 261.Google Scholar
  23. Larner, J., Huang, L.C., Hazen, R., Brooker, G., and Murad, F. (1975). Mechanism of insulin action on glycogenesis. Diabetes 24: 394.Google Scholar
  24. Larner, J., Takeda, Y., Brewer, H.B., Huang, L.C., Hazen, R., Brooker, G., Murad, F., and Roach, P. (1976). Studies on glycogen synthase and its control by hormones. In: S. Shaltiel (Ed.) Metabolic Interconversion of Enzymes. Springer Verlag.Google Scholar
  25. Larner, J., Villar-Palasi, C., and Brown, N.E. (1969). Uridine diphosphate glucose: a-1,4 glucan a-4-glucosyl transferase in heart. Two forms of the enzyme; interconversion reactions and properties. Biochim. Biophys. Acta 178: 470–479.PubMedCrossRefGoogle Scholar
  26. Lin, D.C. and Segal, H.L. (1973). Homogeneous glycogen synthe- tase b from rat liver. J. Biol. Chem. 248: 7007–7011.PubMedGoogle Scholar
  27. McDonald, J.M., Bruns, D.E., and Jarett, L. (1976a). Ability of insulin to increase calcium binding by adipocyte plasma membranes. Proc. Nat’l. Acad. Sci. U.S.A. 73: 1542–1546.CrossRefGoogle Scholar
  28. McDonald, J.M., Bruns, D.E., and Jarett, L. (1976b). The ability of insulin to alter stable calcium pools of isolated adipocyte subcellular fractions. Biochem. Biophys. Res. Commun. 71: 114–121.PubMedCrossRefGoogle Scholar
  29. Miller, T.B. Jr. and Larner, J. (1973). Mechanism of control of hepatic glycogenesis by insulin. J. Biol. Chem. 248: 34833488.Google Scholar
  30. Miller, T.B. Jr. and Larner, J. (1972). Anti-insulin actions of a bovine pituitary diabetogenic peptide on glycogen synthesis. Proc. Nat’l. Acad. Sci. U.S.A. 69: 2774–2777.CrossRefGoogle Scholar
  31. Murad, F., Rall, T., and Vaughan, M. (1969). Conditions for the formation, purification and assay of an inhibitor of adenosine 3’,5’-monophosphate. Biochim. Biophys. Acta 192: 430445.Google Scholar
  32. Nimmo, H.B. and Cohen, P. (1974). Glycogen synthetase kinase 2 (GSK2). The identification of a new protein kinase in skeletal muscle. FEES Lett. 47: 162–166.CrossRefGoogle Scholar
  33. Nimmo, H.G., Proud, C.G., and Cohen, P. (1976). The phosphorylation of rabbit skeletal muscle glycogen synthase by glycogen synthase kinase 2 and adenosine 3’,5’-monophosphate dependent protein kinase. Eur. J. Biochem. 68: 31–44.PubMedCrossRefGoogle Scholar
  34. Nuttall, F.Q. and Larner, J. (1971). Studies on glycogen synthetase interconverting enzymes in in vitro perfused compared to non-perfused rat hearts. Biochim. Biophys. Acta 230: 560–570.PubMedCrossRefGoogle Scholar
  35. Roach, P.J. and Larner, J. (1976). Rabbit skeletal muscle glyco- gen synthase. II. Enzyme phosphorylation state and effector concentrations as interacting control parameters. J. Biol. Chem. 251: 1920–1925.PubMedGoogle Scholar
  36. Roach, P.J. and Larner, J. (1977). Covalent phosphorylation in the regulation of glycogen synthase activity. Mol. Cell. Biochem. 15: 179–200.Google Scholar
  37. Roach, P.J., Takeda, Y., and Larner, J. (1976). Rabbit muscle glycogen synthase. I. Relationship between phosphorylation state and kinetic properties. J. BioZ. Chem. 251: 1913–1919.Google Scholar
  38. Rosen, 0.M., Erlichman, J., and Rubin, C.S. (1975). Molecular structure and characterization of bovine heart protein kinase. pp. 253–263. In: G.I. Drummond, P. Greengard, and G.A. Robison (Eds.) Advances in Cyclic Nucleotides Research, Vol. 5. Raven Press, New York.Google Scholar
  39. Schlender, K.K. and Reimann, E.M. (1975). Isolation of a glycogen synthase I kinase that is independent of adenosine 31,5’monophosphate. Proc. Nat’l. Acad. Sci. U.S.A. 72: 2197–2201.CrossRefGoogle Scholar
  40. Shen, L.C., Villar-Palasi, C., and Larner, J. (1970). Hormonal alteration of protein kinase sensitivity to cyclic AMP. Phys. Chem. and Phys. 2: 536–544.Google Scholar
  41. Smith, C.H., Brown, N.E., and Larner, J. (1971). Molecular characteristics of the totally dependent and independent forms of glycogen synthase of rabbit skeletal muscle II. Biochim. Biophys. Acta 242: 81–88.PubMedCrossRefGoogle Scholar
  42. Soderling, T.R. (1975). Regulation of glycogen synthetase. J. Biol. Chem. 250: 5407–5412.PubMedGoogle Scholar
  43. Soderling, T.R., Corbin, J.D., and Park, C.R. (1973). Regulation of adenosine 3’,5’-monophosphate-dependent protein kinase II. Hormonal regulation of the adipose tissue enzyme. J. Biol. Chem. 248: 1822–1829.PubMedGoogle Scholar
  44. Soderling, T.R., Hickenbottom, J.P., Reimann, E.M., Hunkeler, F.L., Walsh, D.H., and Krebs, E.G. (1970). Inactivation of glycogen synthetase and activation of phosphorylase kinase by muscle adenosine 3’,5’-monophosphate-dependent protein kinases. J. Biol. Chem. 245: 6317–6328.PubMedGoogle Scholar
  45. Takeda, Y. and Larner, J. (1975). Structural studies on rabbit muscle glycogen synthase. II. Limited proteolysis. J. Biol. Chem. 250: 3951–3956.Google Scholar
  46. Villar-Palasi, C., Goldberg, N.D., Bishop, J.S., Nuttall, F.W., Schlender, K.K., and Larner, J. (1970). Hormonal control of glycogen synthetase interconversions. pp. 161–180. In: J.J. Blum (Ed.) Soc. Cen’Z. Phys. Symposium on Biogenic Amines. Prentice Hall, New York.Google Scholar
  47. Villar-Palasi, C. and Wenger, J.I. (1967). In vivo effect of insulin on muscle glycogen synthetase. Identification of the action pathway. Fed. Proc. 26: 563.Google Scholar
  48. Walaas, O., Walaas, E., and Gronnerod, 0. (1973). Hormonal regulation of cyclic-AMP-dependent protein kinase of rat diaphragm by epinephrine and insulin. Eur. J. Biochem. 40: 465–477.PubMedCrossRefGoogle Scholar
  49. Walaas, O., Walaas, E., and GrOnnerOd, 0. (1972). Effect of insulin and epinephrine in cyclic AMP-dependent protein kinase in rat diaphragm. Israel J. Med . Sci. 8: 353–357.PubMedGoogle Scholar
  50. Walsh, D.A., Ashby, C.D., Gonzales, C., Calkins, D., Fischer, E.H., and Krebs, E.G. (1971). Purification and characterization of a protein inhibitor of adenosine 3’,5’-monophosphate-dependent protein kinase. J. Biol. Chem. 246: 1977–1985.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1979

Authors and Affiliations

  • J. Larner
    • 1
  • P. J. Roach
    • 1
  • L. C. Huang
    • 1
  • G. Brooker
    • 1
  • F. Murad
    • 1
  • R. Hazen
    • 1
  1. 1.Department of PharmacologyUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations