Advertisement

Determination of the Diffusion Coefficient of Vapors by Means of a Microbalance

  • K. M. Dijkema
  • J. C. Stouthart

Abstract

Determination of the diffusion coefficient of vapors in gases by Stefan’s method leads to results of rather low reliability. Improvement can be attained by using a recording microbalance. The determination is performed by recording the loss of weight of a small bucket containing a liquid evaporating through a narrow vertical tube. The suspension wire is placed in the axis of the tube. In the case of very narrow tubes (Ø < 10−3 m), tube and container are weighed as a whole.

Variations in apparent weight may occur due to variations in the room temperature and to electrical charges. Small variations in temperature of the evaporating liquid have a very strong influence, especially at higher evaporation rates.

The diffusion coefficient of water vapor in air is determined at 323, 333, and 343 K.

Keywords

Diffusion Coefficient High Evaporation Rate Apparent Weight Evaporation Space Suspension Wire 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Schirmer, Zs. V. D. I. Beihefte Verfahrenstechn., 6, 170 (1938).Google Scholar
  2. 2.
    J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids, John Wiley & Sons, New York (1963).Google Scholar
  3. 3.
    J. S. Rowlinson and J. R. Townley, Trans. Faraday Soc., 49, 20 (1953).CrossRefGoogle Scholar
  4. 4.
    D. A. De Vries and A. J. Kruger, Phénomènes de transport avec changement de phase dans les milieux poreux ou colloidaux, Editions du C. N. R. S., Paris (1967), p. 160.Google Scholar
  5. 5.
    M. Le Blanc and G. Wuppermann, Z. Phys. Chem., 91, 143 (1916).Google Scholar
  6. 6.
    H. Mache, Math. Naturw. Sitz. Ber. Wien, 119, 1399 (1910).Google Scholar
  7. 7.
    M. Trautz and W. Müller, Ann. Phys., 414, 332 (1935).Google Scholar

Copyright information

© Plenum Press, New York 1970

Authors and Affiliations

  • K. M. Dijkema
    • 1
  • J. C. Stouthart
    • 1
  1. 1.Physics DepartmentEindhoven University of TechnologyEindhovenNetherlands

Personalised recommendations