Dynamic Vacuum in Microbalance Chambers

  • W. Kollen
  • A. W. Czanderna


The design of a microbalance vacuum system for obtaining a particular ultimate pressure in the sample region is examined in quantitative detail. The system considered includes the sample container, the hangdown tubes, balance housing, tubulation, and valves that lead to the pump. Since the ultimate pressure is simply the steady state between the gas influx into the system and the pumping speed, the basic equations for calculating the pressure and the effective pumping speed are considered. Then, the sources of total gas influx, such as outgassing of the chamber walls, permeation of gases through the walls, sample outgassing, desorption or outgassing, leaks, and any related temperature effects are considered for baked and unbaked Pyrex glass, quartz, and stainless steel systems. The equations for calculating the effective pumping speed at any point in a vacuum system with different sizes of tubulation and valves are considered. A working system is described to illustrate how the design considerations can be used to obtain the desired performance in a microbalance vacuum system. Finally, the ultimate pressure calculated for various gas loads is compared with the actual performance of the working system.


Vacuum System Sample Region Silver Powder Dynamic Vacuum Ultimate Pressure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. L. Schwoebel, Microbalance theory and design, in: Ultra Micro Weight Determination in Controlled Environments ( S. P. Wolsky and E. J. Zdanuk, eds.), Interscience-Wiley, New York, (1969), p. 61.Google Scholar
  2. 2.
    A. W. Czanderna, Ultramicrobalance review, Ibid, p. 7.Google Scholar
  3. 3.
    E. A. Gulbransen and K. F. Andrew, An enclosed physical chemistry laboratory, in: Vacuum Microbalance Techniques, Vol. 1 ( M. J. Katz, ed.), Plenum Press, New York (1961), p. 10.Google Scholar
  4. 4.
    S. P. Wolsky and E. J. Zdanuk, Ibid., p. 35.Google Scholar
  5. 5.
    K. F. Behrndt, Ibid., p. 69.Google Scholar
  6. 6.
    G. F. Rouse, Vacuum Microbalance Techniques, Vol. 2 (R. F. Walker, ed.), Plenum Press, New York (1962), p. 59.Google Scholar
  7. 7.
    A. W. Czanderna and H. Wieder, Ibid., p. 147.Google Scholar
  8. 8.
    N. J. Carrera et al., Vacuum Microbalance Techniques, Vol.3 (K. H. Berndt, ed.), Plenum Press, New York (1963), p. 153.Google Scholar
  9. 9.
    S. Dushman and J. M. Lafferty, eds., Scientific Foundations of Vacuum Technique, 2nd Edition, John Wiley & Sons, New York (1962).Google Scholar
  10. 10.
    R. W. Roberts and T. A. Vanderslice, Ultra High Vacuum and Its Applications, Prentice Hall, Englewood Cliffs, New Jersey (1963).Google Scholar
  11. 11.
    C. M. Van Atta, Vacuum Science and Engineering, McGraw-Hill, New York (1965), p. 274.Google Scholar
  12. 12.
    B. B. Dayton, Relations between size of vacuum chamber, out-gassing rate, and required pumping speed, in: 1959 6th National Symposium on Vacuum Technology Transactions ( C. R. Meisser, ed.), Pergamon Press, New York (1960), p. 101.Google Scholar
  13. 13.
    B. J. Todd, Outgassing of glass, J. Appl. Phys., 26, 1238 (1955).CrossRefGoogle Scholar
  14. 14.
    D. O. Hayward and B. M. W. Trapnell, Chemisorption, Butter-worths, London (1964).Google Scholar
  15. 15.
    B. J. Hopkins and K. R. Pender, A liquid helium cooled trap for ultrahigh vacuum systems, J. Sci. Inst., 44, 73 (1967).CrossRefGoogle Scholar
  16. 16.
    R. W. Roberts and T. A. Vanderslice, op. cit., pp. 100, 110.Google Scholar
  17. 17.
    F. J. Norton, J. Am. Ceram. Soc., 36, 90 (1953);CrossRefGoogle Scholar
  18. F. J. Norton, Gas permeation through the vacuum envelope, in:1961 Transactions of the Eighth National Vacuum Symposium, Vol. 1 (L. E. Preuss, ed.), Pergamon Press, New York (1962), p. 8.Google Scholar
  19. 18.
    Compendium of Meteorology, American Meteorology, American Meteorol. Soc., Boston (1951), p. 6.Google Scholar
  20. 19.
    C. M. Van Atta, op. cit., p. 24.Google Scholar
  21. 20.
    Ibid., p. 364.Google Scholar
  22. 21.
    A. H. Turnbull, R. S. Barton, and J. C. Riviere, An Introduction to Vacuum Technique, John Wiley & Sons, New York (1963), p. 167.Google Scholar
  23. 22.
    B. B. Dayton, op. cit., p. 101.Google Scholar
  24. 23.
    B. J. Hopkins, Ultrahigh vacua, Contemp. Phys., 9, 115 (1968).CrossRefGoogle Scholar
  25. 24.
    R. D. Gretz, J. Vac. Sci. Tech., 5, 49 (1968).Google Scholar
  26. 25.
    D. H. Buckley, M. Swikert, and R. L. Johnson, Friction, wear, and evaporation rates of various materials in vacuum to 10–7 mm Hg, ASLE/ASME Preprint No. 61 LC-2, Academic Press, New York (1961).Google Scholar
  27. 26.
    C. M. Van Atta, op. cit., p. 25.Google Scholar
  28. 27.
    Ibid., p. 25.Google Scholar
  29. 28.
    Ibid., p. 48.Google Scholar
  30. 29.
    Ibid., p. 50.Google Scholar
  31. 30.
    D. J. Santeler, Pressure measurement in nonbaked ultrahigh vacuum systems, in:1961 Transactions of the Eighth National Vacuum Symposium, Vol. 1 (L. E. Preuss, ed.), Pergamon Press, New York (1962), p. 549.Google Scholar
  32. 31.
    Data Sheet, Vacion Pumps, 50 liter/sec, Varian, Vacuum Division, Palo Alto, California 94303, VAC 2279, Oct. 1966.Google Scholar
  33. 32.
    Bulletin B-1359, Ultek Corp., Palo Alto, California 94303.Google Scholar
  34. 33.
    A. W. Czanderna, J. R. Biegen, and W. Kollen, J. Colloid Interface Sci., 34 (1970), in press.Google Scholar

Copyright information

© Plenum Press, New York 1970

Authors and Affiliations

  • W. Kollen
    • 1
  • A. W. Czanderna
    • 1
  1. 1.Department of Physics and Institute of Colloid and Surface ScienceClarkson College of TechnologyPotsdamUSA

Personalised recommendations