Studies of Acetylcholine Receptor Protein

  • Robert N. Brady
  • William M. Moore
Part of the Advances in Experimental Medicine and Biology book series (AEMB)


The transfer of excitation from nerve to muscle fibers is one of the most thoroughly studied examples of chemical transmission in the nervous system. A great deal is now known about the storage, release, and metabolism of acetylcholine, the neurotransmitter involved in the transmission of impulses at the neuromuscular junction. However, there is still inadequate information about the nature of the acetylcholine binding sites of the postsynaptic membrane, how they are integrated into the cell membranes, and how the events initiated at these receptors may be coupled to ionic, electrical potential, biochemical and mechanical changes.


Acetylcholine Receptor Affinity Column Cholinergic Receptor Rotational Strength Naja Naja 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Assman, G. and Brewer, H.B. Jr. (1974) A molecular model of high density lipoproteins. Proc. Nat’l. Acad. Sci. USA 71: 15341537.Google Scholar
  2. Axen, R., Porath, J., and Ernback, S. (1967) Chemical coupling of peptides and proteins to polysaccharides by means of cyanogen halides. Nature (London) 214: 1302–1304.Google Scholar
  3. Bülbring, E. (1946) Observations on the isolated phrenic nerve diaphragm preparation of the rat. Brit. J. Pharmacol. Chemotherapy 1: 38–61.CrossRefGoogle Scholar
  4. Boguet, P., Izard, Y., Jouannet, M., and Meaume, J. (1966) Etude de deux antigènes toxiques du renin de Naja nigricollis. Comptes Rendus Acad. Sci. 262: 1134–1137.Google Scholar
  5. Capaldi, R.A. and Vanderkooi, G. (1972) The low polarity of many membrane proteins. Proc. Nat’l. Acad. Sci. USA 69: 930–932.PubMedCrossRefGoogle Scholar
  6. Cartaud, J., Benedetti, L., Cohen, J.B., Meunier, J.C., and Changeux, J.P. (1973) Presence of a lattice structure in membrane fragments rich in nicotinic receptor protein from the electric organ of Torpedo marmorata. FEBS Lett. 33: 109–113.CrossRefGoogle Scholar
  7. Chang, C.C., Yang, C.C., Nakai, K., and Hayashi, K. (1971) Studies on the status of free amino and carboxyl groups in cobratoxin. Biochim. Biophys. Acta 251: 334–344.PubMedCrossRefGoogle Scholar
  8. Changeux, J.P., Blumenthal, R., Kasai, M., and Podleski, T.R. (1970) Conformational transitions in the course of membrane excitation. In: Molecular properties of drug receptors ( R. Porter and J. O’Conner, eds.) pp. 197–217, CIBA Foundation Symposium, Churchill, London.Google Scholar
  9. Chen, Y., Yang, J.R., and Martinez, H.M. (1972) Determination of the secondary structures of proteins by circular dichroism and optical rotary dispersion. Biochemistry 11: 4120–4131.PubMedCrossRefGoogle Scholar
  10. deRobertis, E. and Schacht, J. (eds.) (1974) Neurochemistry of cholinergic receptors. Raven Press, New York.Google Scholar
  11. Eldefrawi, M.E. and Eldefrawi, A.J. (1973) Purification and molecular properties of the acetylcholine receptor from Torpedo electroplax. Arch. Biochem. Biophys. 159: 362–372.PubMedCrossRefGoogle Scholar
  12. Eldefrawi, M.E., Eldefrawi, A.J., Gilmour, L.R., and O’Brien, R.D. (1971) Multiple affinities for binding of cholinergic ligands to a particulate fraction of Torpedo electroplax. Mol. Pharmacol. 7: 420–427.PubMedGoogle Scholar
  13. Ellman, G.L., Courtney, K.D., Andres, V., and Featherstone, R. (1961) A new and rapid colorimetric determination of acetyl-cholinesterase activity. Biochem. Pharmacol. 7, 88–95.PubMedCrossRefGoogle Scholar
  14. Franklin, G.I. and Potter, L.T. (1972) Studies of the binding of m-bungarotoxin to membrane-bound and detergent-dispersed acetylcholine receptors from Torpedo electric tissue. FEBS Lett. 28: 101–106.PubMedCrossRefGoogle Scholar
  15. Goldsack, D.E. (1970) Relation of the hydrophobicity index to the thermal stability of homologous proteins. Biopolymers 9: 247252.Google Scholar
  16. Heilbronn, E. and Mattson, C. (1974) The nicotinic cholinergic receptor protein: Improved purification method, preliminary amino acid composition and observed auto-immuno response. J. Neurochem. 22: 315–316.PubMedCrossRefGoogle Scholar
  17. Jensen, C.F., Lutin, W.A., Freeman, J.A., and Brady, R.N. Localization of acetylcholine receptor in brain using horseradish per-oxidase conjugated snake neurotoxin Proc. Am. Soc. Cell Biol,in press.Google Scholar
  18. Karlin, A. (1967) Permeability and internal concentration of ions during depolarization of the electroplax. Proc. Nat’l. Acad. Sci. USA 58: 1162–1167.PubMedCrossRefGoogle Scholar
  19. Katz, B. (1966) Nerve, muscle and synapse. McGraw Hill, New York.Google Scholar
  20. Klett, R.P., Fulpius, B.W., Cooper, D., Smith, M., Reich, E., and Possani, L.D. (1973) The acetylcholine receptor, purifica- tion and characterization of a macromolecule isolated from Electrophorus electricus. J. Biol. Chem. 248: 6841–6853.Google Scholar
  21. Lee, C.Y. and Chang, C.C. (1966) Modes of action of purified toxins from elapid venoms on neuromuscular transmissions. Mem. Inst. Butanan, San Paulo, 33: 555–572.Google Scholar
  22. Liu, T.Y. and Chang, Y.H. (1971) Hydrolysis of proteins with ptoluenesulfonic acid determination of tryptophan. J. Biol. Chem. 246: 2842–2848.PubMedGoogle Scholar
  23. Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J. (1951) Protein measurement with the Folin phenol reagent. J. BioZ. Chem. 193: 265–275.Google Scholar
  24. Meunier, J.C., Sealock, R., Olsen, R., and Changeux, J.P. (1974) Purification and properties of the cholinergic receptor protein from Electrophorus electricus electric tissue. Eur. J. Biochem. 45: 371–394.PubMedCrossRefGoogle Scholar
  25. Meunier, J.C., Sugiyama, H., Cartaud, J., Sealock, R., and Changeux, J.P. (1973) Functional properties of the purified cholinergic receptor protein from Electrophorus electricus. Brain Res. 62: 307–315.CrossRefGoogle Scholar
  26. Moore, W.M., Holladay, L.A., Puett, D., and Brady, R.N. (1974) On the conformation of the acetylcholine receptor protein from Torpedo nobiliana. FEBS Lett. 45: 145–149.CrossRefGoogle Scholar
  27. Morrison, M. and Bayse, G.S. (1970) Catalysis of iodination by lactoperoxidase. Biochemistry 9: 2995–3000.PubMedCrossRefGoogle Scholar
  28. Nachmansohn, D. (1959) Chemical and molecular basis of nerve activity. Academic Press, New York.Google Scholar
  29. Nozaki, Y. and Tanford, C. (1971) The solubility of amino acids and two glycine peptides in aqueous ethanol and dioxane solutions. J. Biol. Chem. 246: 2211–2217PubMedGoogle Scholar
  30. Ong, D.E. and Brady, R.N. (1974) Isolation of cholinergic receptor protein(s) from Torpedo nobiliana by affinity chromatography. Biochemistry 13: 2822–2827.PubMedCrossRefGoogle Scholar
  31. Puett, D., Ascoli, M., and Holladay, L.A. (1974) Conformational and metabolic aspects of gonadotropins. In: Hormone binding and target cell activation in the testis, Vol. I Current topics in molecular endocrinology (A.R. Means and M.L. Dufau,eds.), pp. 109–124, Plenum Press, New York.Google Scholar
  32. Raftery, M.A. (1973) Isolation of acetylcholine receptor-abungarotoxin complexes from Torpedo californica electroplax. Arch. Biochem. Biophys. 154: 270–276.PubMedCrossRefGoogle Scholar
  33. Raftery, M.A., Schmidt, J., and Clark, P.G. (1972) Specificity of a-bungarotoxin binding to Torpedo californica electroplax. Arch. Biochem. Biophys. 152: 882–886.PubMedCrossRefGoogle Scholar
  34. Rang, H.P. (ed.) (1973) Drug receptors. University Park Press, Baltimore.Google Scholar
  35. Reisfeld, R.A., Lewis, U.J., and Williams, D.E. (1962) Disk electrophoresis of basic proteins and peptides on polyacrylamide gels. Nature (London) 195: 281–283.Google Scholar
  36. Rice, R.H. and Means, G.E. (1971) Radioactive labeling of pro-teins in vitro. J. Biol. Chem. 246, 831–832.Google Scholar
  37. Robinson, J.P., Holladay, L.A., Picklesimer, J.B., and Puett, D. (1974) Tetanus toxin conformation. Mol Cell. Biochem. 5: 147–151.PubMedCrossRefGoogle Scholar
  38. Schmidt, J. and Raftery, M.A. (1973) A simple assay for the study of solubilized acetylcholine receptors. Anal. Biochem. 52: 349–354.PubMedCrossRefGoogle Scholar
  39. Segrest, J.P., Jackson, R.L., Morrisett, J.D., and Gotto, A.M. Jr. (1974) A molecular theory lipid-protein interactions in the plasma lipoproteins. FEBS Lett. 38: 247–253.PubMedCrossRefGoogle Scholar
  40. Shih, J.W. and Hash, J.H. (1971) The N, 0-diacetylmuramidase of Chalaropsis species. J. Biol. Chem. 246: 994–1006.PubMedGoogle Scholar
  41. Weber, K.and sborn, M. (1969) The reliability of molecularGoogle Scholar
  42. weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J. Biol. Chem. 244:4406–4412.Google Scholar
  43. Yang, C.C. (1964) Purification of toxic proteins from cobra venom. Tai-Wan I Hsueh Hui Tsa Chih 63: 325.Google Scholar
  44. Zahler, W.L., Puett, D., and Fleischer, S. (1972) Circular di-chroism of mitochondrial membranes before and after extraction of lipids and surface proteins. Biochim. Biophys. Acta 255: 365–379.PubMedCrossRefGoogle Scholar

Discussion References

  1. Kebabian, J.W., Steiner, A.L., and Greengard, P. (1975) Muscarinic cholinergic regulation of cyclic guanosine 3’-5’-monophosphate in autonomic ganglia: Possible role in synaptic transmission. J. Pharmacol. Exp. Ther. 193: 474–488.PubMedGoogle Scholar
  2. Weight, F.F., Petzold, G., and Greengard, P. (1974) Guanosine 3’,5’-monophosphate in sympathetic ganglia: Increase associated with synaptic transmission. Science 186: 942–944.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1978

Authors and Affiliations

  • Robert N. Brady
    • 1
  • William M. Moore
    • 1
  1. 1.Department of BiochemistryVanderbilt UniversityNashvilleUSA

Personalised recommendations