Skip to main content

Specificity and Mechanism of Pepsin Action on Synthetic Substrates

  • Chapter
  • First Online:
Book cover Acid Proteases: Structure, Function, and Biology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 95))

Abstract

Studies on the specificity and mechanism of pepsin action have involved the use of several types of synthetic substrates. In the early work, substrates related to Z-Glu-Tyr (1) or Ac-Phe-Tyr (2) were largely employed; for a review, see (3). In particular, much use had been made of acyl dipeptides of the type A-X-Y, where X and Y are aromatic L-amino acid residues forming the sensitive peptide bond. Because the pKa of the carboxyl group falls in the pH range of pepsin activity, the pH dependence of the kinetic parameters is a function of the ionization of prototrophic groups in both the enzyme and the substrate. The methyl or ethyl esters, or amides, of acyl dipeptides have also been used extensively, but because of their limited solubility in aqueous solution, variable amounts of organic solvents had to be added. Such solvents, even in relatively low concentration, markedly inhibit pepsin action (4,5). To obviate this difficulty, another type of pepsin substrate was introduced, in which a cationic group (the imidazolium group of a His residue, the α-ammonium group, a pyridinium group, or a morpholinium group) is present. By means of such substrates, in particular of the general structure Z-His-X-Y-OMe, the primary specificity of pepsin was defined as a preference for hydrophobic L-amino acid residues in both the X- and Y- positions (10); substitution of either Phe residue of Z-His-Phe-Phe-OMe by its D-enatiomer renders the X-Y bond resistant to pepsin action (6). The favorable effect of an aromatic and planar substituent at the β-carbon of the X and Y residues was emphasized by the finding that when X is β-cyclohexyl-L-alanyl, the value of kcat is much lower than that found for the corresponding substrate in which X or Y = Phe, and is similar to that for substrates in which the X- or Y-position is occupied by an aliphatic amino acid residue larger than Ala (Nva, Nle, Leu, Met). Apparently, the side chains of these amino acids can interact with a portion of the enzymic region that binds planar aromatic groups. It was also shown that the replacement of Phe in the X-position by Val or Ile rendered the X-Y bond resistant to pepsin action than when X = Gly, indicating that when the X-position is occupied by a residue that is branched at the β-carbon, one of the catalytic groups of pepsin may be prevented from attacking the carbonyl group of the sensitive bond. Moreover, the importance of the β-methylene group as a structural element of the X-Y unit was underlined by the finding that replacement of either Phe residue of Z-His-Phe-Phe-OMe by a L-Phenylglycyl residue also rendered the X-Y bond resistant to pepsin action (11).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fruton, J. S., and Bergmann, M. (1939) J. Biol. Chem. 127, 627–641

    CAS  Google Scholar 

  2. Baker, L. E. (1951) J. Biol. Chem. 193, 809–819

    CAS  PubMed  Google Scholar 

  3. Clement, G. E. (1973) Progr. Bioorg. Chem. 2, 177–238

    CAS  Google Scholar 

  4. Tang, J. (1965) J. Biol. Chem. 240, 3810–3815

    CAS  PubMed  Google Scholar 

  5. Zeffren, E., and Kaiser, E. T. (1967) J. Amer. Chem. Soc. 89, 4204–4208

    Article  CAS  Google Scholar 

  6. Inouye, K., and Fruton, J. S. (1967) Biochem. 6, 1765–1777

    Article  CAS  Google Scholar 

  7. Hollands, T. R., Voynick, I. M., and Fruton, J. S. (1969) Biochem. 8, 575–585

    Article  CAS  Google Scholar 

  8. Sachdev, G. P., and Fruton, J. S. (1969) Biochem. 8, 4231–4238

    Article  CAS  Google Scholar 

  9. Tikhodeeva, A. G., Rumsh, L. D., and Antonov, V. K. (1975) Bioorg. Khimia 1, 993–994

    CAS  Google Scholar 

  10. Trout, G. E., and Fruton, J. S. (1969) Biochem. 8, 4183–4190

    Article  CAS  Google Scholar 

  11. Voynick, I. M., and Fruton, J. S., unpublished experiments

    Google Scholar 

  12. Rumsh, L. D., Tikhodeeva, A. G., and Antonov, V. K. (1974) Biokhimiya 39, 899–902

    CAS  Google Scholar 

  13. Fruton, J. S. (1976) Adv. Enzymol. 44, 1–36

    CAS  PubMed  Google Scholar 

  14. Sampath-Kumar, P. S., and Fruton, J. S. (1974) Proc. Natl. Acad. Sci. U.S.A. 71, 1070–1072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Schechter, I., and Berger, A. (1967) Biochem. Biophys. Res. Commun. 27, 157–162

    Article  CAS  PubMed  Google Scholar 

  16. Lowbridge, J., and Fruton, J. S. (1974) J. Biol. Chem. 249, 6754–6761

    CAS  PubMed  Google Scholar 

  17. Sachdev, G. P., and Fruton, J. S. (1970) Biochem. 9, 4465–4470

    Article  CAS  Google Scholar 

  18. Sachdev, G. P., Johnston, M. A., and Fruton, J. S. (1972) Biochem. 11, 1080–1086

    Article  CAS  Google Scholar 

  19. Sachdev, G. P., Brownstein, A. D., and Fruton, J. S. (1973) J. Biol. Chem. 248, 6292–6299

    CAS  PubMed  Google Scholar 

  20. Sachdev, G. P., Brownstein, A. D., and Fruton, J. S. (1975) J. Biol. Chem. 250, 501–507

    CAS  PubMed  Google Scholar 

  21. Humphreys, R. E., and Fruton, J. S. (1968) Proc. Natl. Acad Sci. U.S.A. 59, 519–525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Raju, E. V., Humphreys, R. E., and Fruton, J. S. (1972) Biochem. 11, 3533–3536

    Article  CAS  Google Scholar 

  23. Wang, J. L., and Edelman, G. M. (1971) J. Biol. Chem. 246, 1185–1191

    CAS  PubMed  Google Scholar 

  24. Sachdev, G. P., and Fruton, J. S. (1975) Proc. Natl. Acad. Sci. U.S.A. 72, 3424–3427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Press, E. M., Porter, R. R., and Cebra, J. (1960) Biochem. J. 74, 501–514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Woessner, J. F., and Shamberger, R. J. (1971) J. Biol. Chem. 246, 1951–1960

    PubMed  Google Scholar 

  27. Voynick, I. M., and Fruton, J. S. (1971) Proc. Natl. Acad. Sci. U.S.A. 68, 257–259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Raymond, M. N., Garnier, J., Bricas, E., Cilianu, S., Blasnic, M. Chaix, A., and Lefrancier, P. (1972) Biochimie 54, 145–154

    Article  CAS  PubMed  Google Scholar 

  29. Fruton, J. S. (1975) in Proteases and Biological Control (Reich, E., Rifkin, D. B., and Shaw, E., Eds) pp. 33–50, Cold Spring Harbor Laboratory, New York

    Google Scholar 

  30. Inouye, K., and Fruton, J. S. (1967) J. Amer. Chem. Soc. 89, 187–188

    Article  CAS  Google Scholar 

  31. May, S. W., and Kaiser, E. T. (1969) J. Amer. Chem. Soc. 91, 6491–6495

    Article  CAS  Google Scholar 

  32. May, S. W., and Kaiser, E. T. (1972) Biochem. 11, 592–600

    Article  CAS  Google Scholar 

  33. Hunkapiller, M. W., and Richards, J. H. (1972) Biochem. 11, 2829–2839

    Article  CAS  Google Scholar 

  34. Takahashi, M., Want, T. T., and Hofmann, T. (1974) Biochem. Biophys. Res. Commun. 57, 39–46

    Article  CAS  PubMed  Google Scholar 

  35. Bender, M., and Kezdy, F. (1965) Ann. Rev. Biochem. 34, 49–76

    Article  CAS  PubMed  Google Scholar 

  36. Thompson, R. C., and Blout, E. R. (1973) Biochem. 12, 57–65

    Article  CAS  Google Scholar 

  37. Jencks, W. P. (1975) Adv. Enzymol. 43, 219–410

    CAS  PubMed  Google Scholar 

  38. Burgen, A. S. V., Roberts, G. C. R., and Feeney, J. (1975) Nature 253, 753

    Article  CAS  PubMed  Google Scholar 

  39. Mattis, J. A., and Fruton, J. S. (1976) Biochem. 15, 2191–2194

    Article  CAS  Google Scholar 

  40. Sepulveda, P., Marciniszyn, J., Liu, D., and Tang, J. (1975) J. Biol. Chem. 250, 5082–5088

    CAS  PubMed  Google Scholar 

  41. Bender, M. L., Chow, Y., and Chloupek, F. (1958) J. Amer. Chem. Soc. 80, 5380–5387

    Article  CAS  Google Scholar 

  42. Kirby, A. J., McDonald, R. S., and Smith, C. R. (1974) J. Chem. Soc., Perkin Trans. 2 1974, 1495–1504

    Article  Google Scholar 

  43. Wolfenden, R. (1976) Ann. Rev. Biophys. Bioeng. 5, 271–306

    Article  CAS  Google Scholar 

  44. Marciniszyn, J. P., Hartsuck, J. A., and Tang, J. (1975) Fed. Proc. 34, 484

    Google Scholar 

  45. Rich, D. H., Sun, E., and Singh, J. (1976) Abstr. Amer. Chem. Soc. Divn. Biol. Chem., 172nd Meeting, San Francisco, Cal., No. 42

    Google Scholar 

  46. Cornish-Bowden, A. J., Greenwell, P., and Knowles, J. R. (1969) Biochem. J. 113, 369–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Takahashi, M., and Hofmann, T. (1975) Biochem. J. 147, 549–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Newmark, A. K., and Knowles, J. R. (1975) J. Amer. Chem. Soc. 97, 3557–3559

    Article  CAS  Google Scholar 

  49. Nakagawa, Y., King Sun, L. H., and Kaiser, E. T. (1976) J. Amer. Chem. Soc. 98, 1616–1617

    Google Scholar 

  50. Zeffren, E., and Kaiser, E. T. (1968) Arch. Biochem. Biophys. 126, 965–967

    Article  CAS  PubMed  Google Scholar 

  51. Silver, M. S., and Stoddard, M. (1972) Biochem. 11, 191–200

    Article  CAS  Google Scholar 

  52. Silver, M. S., Stoddard, M., and Kelleher, M. H. (1976) J. Amer. Chem. Soc. 98, (in press)

    Google Scholar 

  53. Richman, P. G., and Fruton, J. S. (1976) Proc. Natl. Acad. Sci. U.S.A. 73, (in press)

    Google Scholar 

  54. Determann, H., Heuer, J., and Jaworek, D. (1965) Ann. Chem. 690, 189–196

    Article  CAS  Google Scholar 

  55. Kozlov, L. V., Ginodman, L. M., Orekhovich, V. N., and Valueva, T. A. (1966) Biokhymiya 31, 315–321

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1977 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fruton, J.S. (1977). Specificity and Mechanism of Pepsin Action on Synthetic Substrates. In: Tang, J. (eds) Acid Proteases: Structure, Function, and Biology. Advances in Experimental Medicine and Biology, vol 95. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-0719-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0719-9_8

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-0721-2

  • Online ISBN: 978-1-4757-0719-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics