Inactive Renin — A Renin Proenzyme?

  • B. J. Leckie
  • A. McConnell
  • J. Jordan
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 92)


Renin cleaves an α-globulin substrate to produce the decapeptide angiotensin I. This is converted by other enzymes to the vasoconstrictor octapeptide angiotensin II. Renin is produced mainly by the kidney although extra-renal sources of the enzyme have been reported (1,2). Boyd (3) showed that in pig kidneys there is a slow-acting renin with a molecular weight (m.w.) of 60,000 as against 40,000 for active pig renin. After acidification, the slow-acting renin becomes more active and its m.w. is 40,000. In rabbit kidney extracts (4) there is an inactive renin of m.w. around 55,000, which, after exposure to pH 3.0, becomes active and its m.w. falls to 37,000, similar to that of active renin. Morris and Johnston (5) have reported an acid-activatable inactive renin of m.w. 44,000 in rat kidneys. In human kidney extracts an acid-activatable renin has been detected (6) and Day and Leutscher (7) and Day, Leutscher, and Gonzales (8) showed that inactive renin of m.w. 60,000 is present in some renal tumors and extracts of kidneys from diabetic patients. Eggena, Barrett, Silpipat and Sambhi (9) have shown that a high m.w. renin is present in human kidney. Slater and Haber (10) isolated a renin of m.w. 63,000 from normal human kidney. An acid-activatable renin is also present in human amniotic fluid (11) and human plasma (12,13,14).


Active Renin Human Kidney Inactive Form Limited Proteolysis Renin Inhibitor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Carretero, O. A., and Houle, J. A. (1970) Amer. J. Physiol. 218, 689–692PubMedGoogle Scholar
  2. 2.
    Ganten, D., Minnich, J. L., Granger, P., Hayduk, K., Brecht, H. M., Barbeau, A., Boucher, R., and Genest, J. (1971) Science 173, 64–65PubMedCrossRefGoogle Scholar
  3. 3.
    Boyd, G. W. (1974) Circ. Res. 35, 426–438PubMedCrossRefGoogle Scholar
  4. 4.
    Leckie, B. J., and McConnell, A. (1975) Circ. Res. 36, 513–519PubMedCrossRefGoogle Scholar
  5. 5.
    Morris, B. J., and Johnston, C. I. (1976) Endocrinology 98, 1466–1474PubMedCrossRefGoogle Scholar
  6. 6.
    Leckie, B., and McConnell, A. (1975) in 10th Acta Endocrinologica Congress, pp. 280, Amsterdam, Periodica, CopenhagenGoogle Scholar
  7. 7.
    Day, R. P., and Luetscher, J. A. (1974) J. Clin. Endocrinol. Metab. 38, 923–926PubMedCrossRefGoogle Scholar
  8. 8.
    Day, R. P., Luetscher, J. A., and Gonzales, C. M. (1975) J. Clin. Endocrinol. Metab. 40, 1078–1093PubMedCrossRefGoogle Scholar
  9. 9.
    Eggena, P., Barrett, J. D., Silpipat, C., and Sambhi, M. P. (1976) Fed. Proc. 35, 705Google Scholar
  10. 10.
    Slater, E. E., and Haber, E. (1976) Circulation 53 and 54 ( Suppl. II ), 143Google Scholar
  11. 11.
    Lumbers, E. R. (1971) Enzymologia 40, 329–336PubMedGoogle Scholar
  12. 12.
    Derkx, F. H. M., Gool, J. M. G., Wenting, G. J., Verhoeven, R. P., Maninveld, A. J., Schalekamp, M. A. D. H. (1976) Lancet II, 496–498CrossRefGoogle Scholar
  13. 13.
    Leckie, B. J., McConnell, A., Grant, J., Morton, J. J., Tree, M., and Brown, J. J. (1977) Circ. Res. 40 (In Press)Google Scholar
  14. 14.
    Leckie, B., Brown, J. J., Lever, A. F., McConnell, A., Morton, J. J., Robertson, J. I. S., Tree, M. (1976) Lancet II, 748CrossRefGoogle Scholar
  15. 15.
    Yalow, R. S. (1974) Recent Progress in Hormone Research 30, 597–633PubMedGoogle Scholar
  16. 16.
    Skinner, S. L., Lumbers, E. R., and Symonds, E. M. (1972) Clin. Sci. 42, 479–488PubMedGoogle Scholar
  17. 17.
    Tree, M. J. (1973) J. Endocrinol. 56, 159A - 171CrossRefGoogle Scholar
  18. 18.
    Bangham, D. R., Robertson, I., Robertson, J. I. S., Robinson, C. J., and Tree, M. (1975) Clin. Sci. and Mol. Med. 48, 135s - 159sGoogle Scholar
  19. 19.
    Skinner, S. L., Cran, E. J., Gibson, R., Taylor, R., Walters, V. A. W., and Catt, K. J. (1975) Amer. J. Obstet. Gynecol. 121, 626–630Google Scholar
  20. 20.
    Cooper, R. M., Osmond, D. H., Scaiff, K. D., and Ross, L. J. (1974) Fed. Proc. 33, 584Google Scholar
  21. 21.
    Murray, G. E., and Osmond, D. H. (1975) Fed. Proc. 34, 367Google Scholar
  22. 22.
    Morris, B. J., and Lumbers, E. R. (1972) Biochim. Biophys. Acta 289, 385–391PubMedCrossRefGoogle Scholar
  23. 23.
    Schwert, G. W., and Takenaka, Y. (1953) Biochim. Biophys. Acta 16, 570–575CrossRefGoogle Scholar
  24. 24.
    Regoli, D. (1970) Can. J. Physiol. Pharmacol. 48, 350–358CrossRefGoogle Scholar
  25. 25.
    Andrews, P. (1964) Biochem. J. 91, 222–233PubMedGoogle Scholar
  26. 26.
    Kunitz, M., and Northrop, J. H. (1936) J. Gen. Physiol. 19, 991–1007PubMedCrossRefGoogle Scholar
  27. 27.
    Saklatvala, J., Wood, G. C., and White, D. D. (1976) Biochem. J. 157, 339–351PubMedGoogle Scholar
  28. 28.
    Van Vanukis, H., and Herriott, R. M. (1956) Biochim. Biophys. Acta 22, 537–543CrossRefGoogle Scholar
  29. 29.
    Murakami, K., Matoba, T., and Inagami, T. (1976) Fed. Proc. 35, 1355Google Scholar

Copyright information

© Springer Science+Business Media New York 1977

Authors and Affiliations

  • B. J. Leckie
    • 1
  • A. McConnell
    • 1
  • J. Jordan
    • 1
  1. 1.M. R. C. Blood Pressure UnitWestern InfirmaryGlasgowScotland

Personalised recommendations