Advertisement

Nitrogen Oxides and Nitroxyls

  • E. G. Rozantsev
  • H. Ulrich

Abstract

The simplest representative of this class of free radicals is nitric oxide. In spite of the presence of a free valence, nitric oxide is considerably less active chemically than atomic hydrogen or chlorine, and, under ordinary conditions, does not recombine to form N2O2 molecules, apart from those cases where it is present as a liquid (bp, − 151.7°C) or solid (mp, − 163.6°C) [1–5]. On the basis of spectroscopic investigations of dimeric nitrogen oxide, it may apparently be ascribed a Π-shaped configuration [6–8]. Because of this, liquid nitric oxide possesses a high specific heat capacity, with a marked dependence on temperature, and a high entropy of evaporation.

Keywords

Nitric Oxide Unpaired Electron Nitrogen Oxide Hyperfine Structure Nitrogen Dioxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Field and C. Hardy, Quart. Rev. 18, 361 (1964).Google Scholar
  2. 2.
    H. Urey, L. Dawsey, and F. Rice, J. Am. Chem. Soc. 51, 3190 (1929).Google Scholar
  3. 3.
    H. Bizette and B. Tsay, Compt. Rend. 204, 1638 (1937).Google Scholar
  4. 4.
    H. Johnston and W. Giauque, J. Am. Chem. Soc. 51, 3194 (1929).Google Scholar
  5. 5.
    E. Lips, Help. Phys. Acta 8, 247 (1935).Google Scholar
  6. 6.
    L. D’Or and P. Tarte, Bull. Soc. Roy. Sci., Liège, 1953 (6–7), 276.Google Scholar
  7. 7.
    W. Fateley, H. Bent, and B. Crawford, J. Chem. Phys. 31, 204 (1959).Google Scholar
  8. 8.
    W. Spindel and M. Stern, J. Chem. Phys. 32, 1579 (1960).Google Scholar
  9. 9.
    R. Mulliken, Rev. Mod. Phys. 4, 1 (1932).Google Scholar
  10. 10.
    L. Pauling, The Nature of the Chemical Bond, Cornell Univ. Press, New York, 3rd ed. (1960).Google Scholar
  11. 11.
    H. Watson, G. Rao, and K. Ramaswamy, Proc. Roy. Soc. A143, 558 (1934).Google Scholar
  12. 12.
    N. Jonathan, J. Mol. Spectr. 4, 59 (1961).Google Scholar
  13. 13.
    L. Klinkenberg, Rec. Trap. Chim. 56, 749 (1937).Google Scholar
  14. 14.
    J. Frazer and N. Long, J. Chem. Phys. 6, 462 (1938).Google Scholar
  15. 15.
    H. Remy, Lehrbuch der anorganischen Chemie, Geest und Portig, Leipzig, 9th ed. (1959), 12th ed. (1963).Google Scholar
  16. 16.
    R. Heslop and P. Robinson, Inorganic Chemistry, London (1960).Google Scholar
  17. 17.
    M. Trautz, Z. Anorg. Chem. 88, 285 (1964).Google Scholar
  18. 18.
    W. Krauss and M. Saracini, Z. Phys. Chem. 178, 245 (1937).Google Scholar
  19. 19.
    M. Bodenstein and W. Krauss, Z. Phys. Chem. 175, 294 (1936).Google Scholar
  20. 20.
    M. Bodenstein, Z. Phys. Chem. 100, 68 (1922).Google Scholar
  21. 21.
    V. P’yankov, Zh. Obshch. Khim. 3, 652 (1933).Google Scholar
  22. 22.
    R. Ogg, J. Chem. Phys. 21, 2079 (1953).Google Scholar
  23. 23.
    S. Benson, Foundations of Chemical Kinetics, McGraw-Hill, New York (1960).Google Scholar
  24. 24.
    C. Hinshelwood and T. Green, J. Chem. Soc. 129, 720 (1926).Google Scholar
  25. 25.
    J. Mitchell and C. Hinshelwood, J. Chem. Soc. 1936, 378.Google Scholar
  26. 26.
    C. Cain and F. Wiselogle, J. Am. Chem. Soc. 62, 1163 (1940).Google Scholar
  27. 27.
    W. Schlenk, L. Mair, and C. Bornhardt, Ber. 44, 1170 (1911).Google Scholar
  28. 28.
    E. Arden and L. Phillips, Proc. Chem. Soc. 1962, 354.Google Scholar
  29. 29.
    S. Brois, Tetrahedron Letters 1964(7), 345.Google Scholar
  30. 30.
    L. Staveley and C. Hinshelwood, Trans. Faraday Soc. 35, 845 (1939).Google Scholar
  31. 31.
    L. Phillips, Proc. Chem. Soc. 204 (1961).Google Scholar
  32. 32.
    A. Maschke, B. Shapiro, and F. Lampe, J. Am. Chem. Soc. 85, 1876 (1963).Google Scholar
  33. 33.
    J. Lewis, R. Irwing, and G. Wilkinson, J. Inorg. Nuclear Chem. 7, 32 (1958).Google Scholar
  34. 34.
    W. Griffith, J. Lewis, and G. Wilkinson, J. Inorg. Nuclear Chem. 7, 38 (1958).Google Scholar
  35. 35.
    Bernal and S. Harrison, J. Chem. Phys. 34, 102 (1961).Google Scholar
  36. 36.
    I. Bernal and E. Hockings, Proc. Chem. Soc. 1962, 361.Google Scholar
  37. 37.
    B. Tyles, Nature 195, 279 (1962).Google Scholar
  38. 38.
    J. Birchall, A. Bloom, R. Haszeldine, and C. Willis, J. Chem. Soc. 1962, 3021.Google Scholar
  39. 39.
    L. Batt and B. Gowenlock, Trans. Faraday Soc. 56, 682 (1960).Google Scholar
  40. 40.
    G. Dousmanis, Phys. Rev. 97, 967 (1955).Google Scholar
  41. 41.
    R. Beringer and J. Castle, Phys. Rev. 78, 581 (1950).Google Scholar
  42. 42.
    J. Castle and R. Beringer, Phys. Rev. 80, 114 (1950).Google Scholar
  43. 43.
    C. Lin, K. Hijikata, and M. Sakamoto, J. Chem. Phys. 33, 878 (1960).Google Scholar
  44. 44.
    R. Beringer, E. Rawson, and A. Henry, Phys. Rev. 94, 343 (1954).Google Scholar
  45. 45.
    W. Giauque and J. Kamp, J. Chem. Phys. 6, 40 (1938).Google Scholar
  46. 46.
    E. Leifer, J. Chem. Phys. 8, 301 (1940).Google Scholar
  47. 47.
    D. Stronks and R. Wilkins, Chem. Rev. 57, 743 (1957).Google Scholar
  48. 48.
    H. Siebert, Z. Anorg. Allg. Chem. 275, 210 (1954).Google Scholar
  49. 49.
    F. Verhoek and F. Daniels, J. Am. Chem. Soc. 53, 1250 (1931).Google Scholar
  50. 50.
    E. Archibald, The Preparation of Pure Inorganic Substances, John Wiley and Sons, New York (1932), p. 246.Google Scholar
  51. 51.
    L. Pauling, College Chemistry-An Introductory Textbook of General Chemistry, W. H. Freeman, San Francisco, 3rd ed. (1964).Google Scholar
  52. 52.
    B. Bodenstein and F. Lindner, Z. Phys. Chem. 100, 82 (1922).Google Scholar
  53. 53.
    G. Sutherland and W. Penney, Nature 136, 146 (1935).Google Scholar
  54. 54.
    G. Sutherland and W. Penney, Proc. Roy. Soc. A156, 678 (1936).Google Scholar
  55. 55.
    R. Gillespie and D. Millen, Quart. Rev. 2, 277 (1948).Google Scholar
  56. 56.
    S. Claesson, J. Donohue, and V. Schomaker, J. Chem. Phys. 16, 207 (1948).Google Scholar
  57. 57.
    L. Maxwell and V. Mosley, J. Chem. Phys. 8, 738 (1940).Google Scholar
  58. 58.
    W. Orville-Thomas, Chem. Rev. 57, 1179 (1957).Google Scholar
  59. 59.
    A. Walsh, J. Chem. Soc. 1953, 2266.Google Scholar
  60. 60.
    J. Tanaka, Nippon Kagaku Zasshi 78, 1643 (1957).Google Scholar
  61. 61.
    K. McEven, J. Chem. Phys. 32, 1801 (1961).Google Scholar
  62. 62.
    H. Kato, T. Yonezawa, K. Motokuma, and K. Fukui, Bull. Chem. Soc. (Japan) 37, 1710 (1964).Google Scholar
  63. 63.
    B. Houston and T. Johnson, J. Am. Chem. Soc. 47, 3011 (1925).Google Scholar
  64. 64.
    P. P. Shorygin and A. V. Topchiev, Zh. Obshch. Khim. 5, 549 (1935).Google Scholar
  65. 65.
    A. V. Fokin, V. A. Komarov, and I. N. Sorochkin, Zh. Vses. Khim. Obschestra im. D. I. Mendeleeva 10, 354 (1965).Google Scholar
  66. 66.
    G. Hauptschein and R. Oesterling, J. Org . Chem. 28, 1279 (1963).Google Scholar
  67. 67.
    R. Norrish and J. Wallace, Proc. Roy. Soc. A145, 307 (1934).Google Scholar
  68. 68.
    C. McDowell and J. Thomas, Trans. Faraday Soc. 46, 1030 (1950).Google Scholar
  69. 69.
    F. Seel and H. Meier, Z. Anorg. Allg. Chem. 274, 197 (1953).Google Scholar
  70. 70.
    J. Ogilvie, Nature 204, 572 (1964).Google Scholar
  71. 71.
    J. Gray and D. Style, Trans. Faraday Soc. 49, 52 (1953).Google Scholar
  72. 72.
    J. Thomas, Trans. Faraday Soc. 49, 630 (1953).Google Scholar
  73. 73.
    C. McDowell and J. Thomas, J. Chem. Soc. 1950, 1462.Google Scholar
  74. 74.
    A. Schaarschmidt and H. Hofmeier, Ber. 58B, 1047 (1925).Google Scholar
  75. 75.
    B. Brooks and C. Boord, in: The Chemistry of Petroleum Hydrocarbons, Reinhold, New York, Vol. I (1954).Google Scholar
  76. 76.
    P. Atkins, N. Keen, and M. Symons, J. Chem. Soc. 1962, 2873.Google Scholar
  77. 77.
    G. Bird, J. Baird, and R. Williams, J. Chem. Phys. 28, 738 (1958).Google Scholar
  78. 1.
    E. Fremy, Ann. Chim. Phys. 15 (3), 408 (1845).Google Scholar
  79. 2.
    G. Harvey and R. Hollingshead, Chem. Ind. (London) 1953(11), 244.Google Scholar
  80. 3.
    F. Raschig, Schwefel und Stickstoffstudien, Leipzig and Berlin (1924), p. 148.Google Scholar
  81. 4.
    R. Asmussen, Z. Anorg. Chem. 212, 317 (1933).Google Scholar
  82. 5.
    F. Raschig, Ann. Chem. 241, 183 (1887).Google Scholar
  83. 6.
    B. Smaler and E. Yasaitis, J. Chem. Phys. 21, 1905 (1953).Google Scholar
  84. 7.
    G. Pake, J. Townsend, and S. Weissman, Phys. Rev. 85, 682 (1952).Google Scholar
  85. 8.
    A. Hantzsch and W. Semple, Ber. 28, 2744 (1895).Google Scholar
  86. 9.
    H. Gehlen, Ber. 66B, 292 (1933).Google Scholar
  87. 10.
    L. Pauling, The Nature of the Chemical Bond, Cornell University Press, New York, 3rd ed. (1960).Google Scholar
  88. 11.
    J. Candlin and R. Wilkins, J. Chem. Soc. 1961, 3625.Google Scholar
  89. 12.
    E. Divers and T. Haga, J. Chem. Soc. 65, 523 (1894).Google Scholar
  90. 13.
    T. Haga, J. Chem. Soc. 85, 78 (1904).Google Scholar
  91. 14.
    J. Li and D. Ritter, J. Am. Chem. Soc. 75, 3024 (1953).Google Scholar
  92. 15.
    J. Li and D. Ritter, J. Am. Chem. Soc. 75, 5823 (1953).Google Scholar
  93. 16.
    H. Gehlen, Ber. 70B, 1980 (1937).Google Scholar
  94. 17.
    S. Yanada and R. Tsuchida, Bull. Chem. Soc. Japan 32, 721 (1959).Google Scholar
  95. 18.
    J. Burib and D. Ritter, J. Am. Chem. Soc. 74, 3394 (1952).Google Scholar
  96. 19.
    A. Hoffman, Chem. Eng. News 1961(51), 24.Google Scholar
  97. 20.
    J. Linnett, J. Am. Chem. Soc. 83, 2643 (1961).Google Scholar
  98. 21.
    L. Fieser and M. Fieser, Advanced Organic Chemistry, Reinhold, New York (1961), p. 853.Google Scholar
  99. 22.
    H.-I. Teuber and G. Jellinek, Ber. 85, 95 (1952).Google Scholar
  100. 23.
    R. Pumerer and F. Frankfurter, Ber. 47, 1472 (1914).Google Scholar
  101. 24.
    H.-I. Teuber and W. Rau, Ber. 86, 1036 (1953).Google Scholar
  102. 25.
    H.-I. Teuber and N. Götz, Ber. 87, 1236 (1954).Google Scholar
  103. 26.
    L. Homer and K. Sturm, Ber. 88, 329 (1955).Google Scholar
  104. 27.
    H.-I. Teuber and G. Staiger, Ber. 87, 1251 (1954).Google Scholar
  105. 28.
    E. Müller, F. Günter, and A. Ricker, Z. Naturforsch. 18b, 1002 (1963).Google Scholar
  106. 29.
    R. Magnusson, Acta Chem. Scand. 18, 759 (1964).Google Scholar
  107. 30.
    H.-I. Teuber, Angew. Chem. 68, 420 (1956).Google Scholar
  108. 31.
    H.-I. Teuber and G. Staiger, Ber. 89, 489 (1956).Google Scholar
  109. 32.
    H.-I. Teuber, Angew. Chem. 69, 308 (1957).Google Scholar
  110. 33.
    H.-I. Teuber, Angew. Chem. 68, 420 (1956).Google Scholar
  111. 34.
    H.-I. Teuber, Angew. Chem. 68, 628 (1956).Google Scholar
  112. 35.
    H.-I. Teuber and N. Götz, Ber. 89, 2654 (1956).Google Scholar
  113. 36.
    H.-I. Teuber and G. Thaler, Ber. 91, 2253 (1958).Google Scholar
  114. 37.
    H.-I. Teuber and G. Thaler, Ber. 92, 667 (1959).Google Scholar
  115. 38.
    H.-I. Teuber and M. Hasselbach, Ber. 92, 674 (1959).Google Scholar
  116. 39.
    H.-I. Teuber and W. Schmidtke, Ber. 93, 1257 (1960).Google Scholar
  117. 40.
    H.-I. Teuber and H. Lindner, Ber. 92, 921, 927 (1959).Google Scholar
  118. 41.
    H.-I. Teuber and H. Lindner, Ber. 92, 932 (1959).Google Scholar
  119. 42.
    H.-I. Teuber and G. Staiger, Ber. 92, 2385 (1959).Google Scholar
  120. 43.
    G. Allen and W. Waters, J. Chem. Soc. 1956, 1132.Google Scholar
  121. 44.
    Von H. Gehlen, H. Elchlepp, and J. Cermak, Z. Anorg. Allg. Chem. 274, 293 (1953).Google Scholar
  122. 45.
    H. Gehlen and G. Dase, Z. Anorg. Allg. Chem. 275, 327 (1954).Google Scholar
  123. G. Goldberg and J. Lu Valle, US Patent 2,938,793.Google Scholar
  124. 47.
    A. A. Medzhidov, É. G. Rozantsev, and M. B. Neiman, Dokl. Akad. Nauk SSSR 168, 348 (1966).Google Scholar
  125. 48.
    T. Chu, G. Pake, D. Paul, I. Townsend, and S. Weissman, J. Phys. Chem. 57, 504 (1953).Google Scholar
  126. 49.
    S. Weissman and D. Banfill, J. Am. Chem. Soc. 75, 2534 (1953).Google Scholar
  127. 50.
    V. A. Sharpatyi, Yu. N. Molin, V. K. Ermolaev, T. S. Zhuravlev, and M. A. Proskurin, Problemy Spectroskopii 2, 100 (1963).Google Scholar
  128. 51.
    I. Townsend, S. Weissman, and G. Pake, Phys. Rev. 89, 606 (1953).Google Scholar
  129. 52.
    I. Powles and M. Mosley, Proc. Phys. Soc. 77, 729 (1961).Google Scholar
  130. 53.
    I. Burgess, J. Phys. Rad. 19, 845 (1958).Google Scholar
  131. 54.
    I. Windle and A. Wiersema, J. Chem. Phys. 39, 1139 (1963).Google Scholar
  132. 55.
    A. Abragam, J. Combrisson, and I. Solomon, Compt. Rend. 245, 157 (1957).Google Scholar
  133. 56.
    A. Overhauser, Phys. Rev. 92, 411 (1953).Google Scholar
  134. 57.
    A. Abragam, Phys. Rev. 98, 1729 (1955).Google Scholar
  135. 58.
    V. M. Ryzhkov and A. P. Stepanov, Geofiz. Priborostroenie 12, 35 (1962).Google Scholar
  136. 59.
    W. Müller-Warmuth, Z. Naturforsch. 15a, 927 (1960).Google Scholar
  137. 60.
    W. Müller-Warmuth and P. Parikh, Z. Naturforsch. 15a, 86 (1960).Google Scholar
  138. 61.
    A. P. Stepanov, USSR Authors’ Certificate 148 920 (1962).Google Scholar
  139. 62.
    A. P. Stepanov, Pribory i Tekhn. Éksperim. 1962(3), 102.Google Scholar
  140. 63.
    A. I. Filatov, A. P. Stepanov, and V. M. Stotskii, Pribory i Tekhn. Éksperim. 1965(1), 169.Google Scholar
  141. 64.
    J. Combrisson, J. Phys. Rad. 19, 840 (1958).Google Scholar
  142. 65.
    E. Allais, Compt. Rend. 246, 2123 (1958).Google Scholar
  143. 66.
    N. Bloembergen, E. Purcell, and B. Pound, Phys. Rev. 73, 679 (1948).Google Scholar
  144. 67.
    E. Hahn, Phys. Rev. 80, 580 (1950).Google Scholar
  145. 68.
    A. L. Buchachenko, Stable Radicals, Izd. Akad. Nauk SSSR, Moscow (1963).Google Scholar
  146. 1.
    O. Piloty and B. Graf Schwerin, Ber. 34, 1870 (1901).Google Scholar
  147. 2.
    P. Karrer, Organische Chemie, Georg Thieme, Stuttgart, 12th ed. (1954), 14th ed. (1963) [English translation, Elsevier, Amsterdam, 4th ed. (1961)].Google Scholar
  148. 3.
    O. Piloty and B. Graf Schwerin, Ber. 34, 2354 (1901).Google Scholar
  149. 4.
    E. Müller and I. Müller-Rodloff, Ann. Chem. 521, 81 (1936).Google Scholar
  150. 5.
    N. Holden, W. Yager, and F. Merritt, J. Chem. Phys. 19, 1319 (1951).Google Scholar
  151. 6.
    C. Hutchinson, R. Pastor, and A. Kovalsky, J. Chem. Phys. 20, 534 (1952).Google Scholar
  152. 7.
    K. Kuhn and W. Franke, Ber. 68, 1529 (1935).Google Scholar
  153. 8.
    K. Hausser, Z. Naturforsch. 14a, 425 (1959).Google Scholar
  154. 9.
    H. Wieland and M. Offenbauher, Ber. 47, 2111 (1914).Google Scholar
  155. 10.
    K. Meyer and H. Gottlieb-Billroth, Ber. 52, 1476 (1919).Google Scholar
  156. 11.
    A. Hoffman, A. Feldman, and E. Gelblum, J. Am. Chem. Soc. 86, 646 (1964).Google Scholar
  157. 12.
    A. P. Forrester, J. M. Hay, R. H. Thompson, Organic Chemistry of Stable Free Radicals, Academic Press, New York (1968).Google Scholar
  158. 13.
    R. Hoskins, J. Chem. Phys. 25, 788 (1956).Google Scholar
  159. 14.
    J. Thomas, J. Am. Chem. Soc. 82, 5955 (1960).Google Scholar
  160. 15.
    J. Baird and J. Thomas, J. Chem. Phys. 35, 1507 (1961).Google Scholar
  161. 16.
    A. L. Buchachenko, Opt. i Spektroskopiya 13, 795 (1962).Google Scholar
  162. 17.
    A. L. Buchachenko, Stable Radicals, Izd. Akad. Nauk SSSR (1963), p. 115.Google Scholar
  163. 18.
    É. G. Rozantsev, A. A. Medzhidov, M. B. Neiman, and L. A. Skripko, Omagiu Raluca Ripan, [Homage to Reluca Ripan], Rumania (1966), p. 503.Google Scholar
  164. 19.
    H. Wieland and K. Roth, Ber. 53, 210 (1920).Google Scholar
  165. 20.
    H. Wieland and F. Kögl, Ber. 55, 1798 (1922).Google Scholar
  166. 21.
    J. Osugi, M. Sato, and M. Sasaki, Nippon Kagaku Zasshi 85, 307 (1964).Google Scholar
  167. 22.
    H. Lemaire, A. Rassat, and J. Ravet, Tetrahedron Letters 1964, 3507.Google Scholar
  168. 23.
    K. Tokumaru, H. Sakuragi, and O. Simamura, Tetrahedron Letters 1964, 3945.Google Scholar
  169. 24.
    O. A. Chaltykyan, Questions of Chemical Kinetics and Reactivity, A Collection of Papers, Moscow (1955), p. 354.Google Scholar
  170. 25.
    A. L. Buchachenko, Candidate’s Thesis, Moscow (1961).Google Scholar
  171. 26.
    I. Deguchi, Bull. Chem. Soc. Japan 35, 260 (1962).Google Scholar
  172. 27.
    O. Harle and J. Thomas, J. Am. Chem. Soc. 79, 2973 (1957).Google Scholar
  173. 28.
    A. L. Buchachenko, E. N. Gur’yanova, L. A. Kalashnikova, and M. B. Neiman, Dokl. Akad. Nauk SSSR 148, 95 (1963).Google Scholar
  174. 29.
    G. Schoffa, B. Wahler, and H. Thom, Acta Biol. Med. Germ. 1, 114 (1958).Google Scholar
  175. 30.
    H. Thom, B. Wahler, and G. Schoffa, Z. Naturforsch. 13a, 552 (1958).Google Scholar
  176. 31.
    K. Meyer and W. Reppe, Ber. 54, 327 (1921).Google Scholar
  177. 32.
    H. Euler, H. Hasselquist, and O. Heidenberger, Arkiv Kemi 14, 237 (1959).Google Scholar
  178. 33.
    E. Müller, I. Müller-Rodloff, and W. Bunge, Ann. 520, 235 (1935).Google Scholar
  179. 34.
    N. Holden, C. Kittel, F. Merrit, and W. Yager, Phys. Rev. 77 (2), 147 (1950).Google Scholar
  180. 35.
    D. Bijl and A. Rose-Innes, Phil. Mag. 44, 1187 (1953).Google Scholar
  181. 36.
    W. Heubner, B. Wahler, and C. Ziegler, Z. Physiol. Chem. 295, 397 (1953).Google Scholar
  182. 37.
    F. Adrian, J. Chem. Phys. 28, 608 (1958).Google Scholar
  183. 38.
    G. Bartlet, Arch. Sci. Sonder 10 (162), 98 (1957).Google Scholar
  184. 39.
    J. Burgess, J. Phys. Rad. 19, 845 (1958).Google Scholar
  185. 40.
    W. Otting and H. Kainer, Ber. 87, 1205 (1954).Google Scholar
  186. 41.
    A. Roggen, L. Roggen, and W. Gordy, Phys. Rev. 105, 50 (1957).Google Scholar
  187. 42.
    F. Galavies, Helv. Phys. Acta 6, 555 (1933).Google Scholar
  188. 43.
    É. G. Rozantsev, L. A. Kalashnikova, and M. B. Neiman, Zh. Prikl. Khim. 38, 702 (1965).Google Scholar
  189. 44.
    A. Hanson, Acta Cryst. 6, 32 (1953).Google Scholar
  190. 45.
    N. N. Volkotrub, É. G. Rozantsev, and L. A. Skripko, Izv. Akad. Nauk SSSR, Ser. Khim. 1967, 179.Google Scholar
  191. 46.
    J. Deguchi, Bull. Chem. Soc. Japan 34, 910 (1961).Google Scholar
  192. 47.
    S. Weissman, J. Chem. Phys. 25, 890 (1956).Google Scholar
  193. 48.
    P. Fister and F. Neugebauer, Z. Naturforsch. 19a, 1514 (1964).Google Scholar
  194. 49.
    A. Rassat and H. Lemaire, J. Chem. Phys. 1964, 1576.Google Scholar
  195. 50.
    É. G. Rozantsev and E. N. Gur’yanova, Izv. Akad. Nauk SSSR, Ser. Khim. 1966, 979.Google Scholar
  196. 51.
    L. Cambi, Gazz. Chim. Ital. 63, 579 (1933).Google Scholar
  197. 52.
    R. Huisgen, Proc. Chem. Soc. 1958, 210.Google Scholar
  198. 53.
    L. Cambi and L. Szegö, Ber. 64, 2591 (1931).Google Scholar
  199. 54.
    É. G. Rozantsev and M. B. Neiman, Zh. Organ. Khim. 1, 1337 (1965).Google Scholar
  200. 55.
    O. L. Lebedev and G. A. Razuvaev, Zh. Organ. Khim. 1, 613 (1965).Google Scholar
  201. 56.
    K. Möbius and F. Schneider, Z. Naturforsch. 18a, 428 (1963).Google Scholar
  202. 57.
    L. A. Kalashnikova, M. B. Neiman, É. G. Rozantsev, and L. A. Skripko, Zh. Organ. Khim. 2, 1529 (1966).Google Scholar
  203. 58.
    É. G. Rozantsev, Usp. Khim. 35, 1549 (1966).Google Scholar
  204. 59.
    F. Banfield and J. Kenyon, J. Chem. Soc. 1926, 1612.Google Scholar
  205. 60.
    J. Kenyon and S. Sugden, J. Chem. Soc. 1932, 170.Google Scholar
  206. 61.
    F. Tüdös, I. Heidt and I. Ero, Magy. Kem. Foloirat 70, 329 (1964).Google Scholar
  207. 62.
    F. Tüdös, T. Berersnich and M. Azori, Acta Chem. Acad. Sci. Hung. 24, 91 (1960).Google Scholar
  208. 63.
    V. Griffiths and G. Parlett, Nature 204, 69 (1964).Google Scholar
  209. 64.
    W. Mickel and W. Liegel, Ber. 71, 1442 (1938).Google Scholar
  210. 65.
    V. Trkal, Czech. J. Phys. 6, 770 (1957).Google Scholar
  211. 66.
    V. Trkal, Czesk. Casopis. Fysiku 7, 748 (1957).Google Scholar
  212. 67.
    K. Ulbert and V. Trkal, Collection Czech. Chem. Commun. 25, 1216 (1960).Google Scholar
  213. 68.
    G. Chapelet-Letourneux, H. Lemaire, and A. Rassat, Bull. Soc. Chico. France 1965, 444.Google Scholar
  214. 69.
    A. Forrester and R. Thomson, Nature 203, 74 (1964).Google Scholar
  215. 70.
    H. Lemaire, A. Rassat, and A.-M. Ravet, Bull. Soc. Chico. France 1963, 1980.Google Scholar
  216. 71.
    H. Lemaire, Y. Marechal, R. Ramasseul, and A. Rassat, Bull. Soc. Chim. France 1965, 372.Google Scholar
  217. 72.
    H. Aurich and F. Baer, Tetrahedron Letters 1965, 2517.Google Scholar
  218. 73.
    G. A. Razuvaev, M. L. Khidekel’, and V. B. Berlina, Dokl. Akad. Nauk SSSR 145, 1071 (1962).Google Scholar
  219. 74.
    G. A. Razuvaev and M. L. Khidekel’, Korrelvats. Uravneniya v Organ. Khim. (Tartu) 1, 365 (1962).Google Scholar
  220. 75.
    A. B. Shapiro, É. G. Rozantsev, L. S. Povarov, and V. N. Grigos, Izr. Akad. Nauk SSSR, Ser. Khim. 1964, 1725.Google Scholar
  221. 76.
    A. B. Shapiro, E. G. Rozantsev, L. S. Povarov, and V. N. Grigos, lzv. Akad. Nauk SSSR, Ser. Khim. 1965, 1102.Google Scholar
  222. 1.
    H. La Mare, J. Org . Chem. 25, 2114 (1960).Google Scholar
  223. 2.
    D. Johnson, M. Rogers, and G. Trappe, J. Chem. Soc. 1956, 1093.Google Scholar
  224. 3.
    M. Rogers, J. Chem. Soc. 1956, 2784.Google Scholar
  225. 4.
    R. Bonnett, R. Brown, V. Clark, J. Sutherland, and A. Todd, J. Chem. Soc. 1959, 2094.Google Scholar
  226. 5.
    R. Bonnett, V. Clark, and A. Todd, J. Chem. Soc. 1959, 2102.Google Scholar
  227. 6.
    C. Brown and M. Rogers, British Patent 850,418 (1960); Chem. Abstr. 55, 6498 (1961).Google Scholar
  228. 7.
    R. Brown, V. Clark, and A. Todd, J. Chem. Soc. 1959, 2105.Google Scholar
  229. 8.
    R. Brown, V. Clark, J. Sutherland, and A. Todd, J. Chem. Soc. 1959, 2109.Google Scholar
  230. 9.
    P. Grammaticakis, Compt. Rend. 224, 1066 (1947).Google Scholar
  231. 10.
    J. Thesing, A. Müller, and G. Michel, Ber. 88, 1030 (1955).Google Scholar
  232. 11.
    J. Thesing and H. Mayer, Ber. 89, 2159 (1956).Google Scholar
  233. 12.
    J. Thesing and H. Mayer, Ann. Chem. 609, 46 (1957).Google Scholar
  234. 13.
    O. L. Lebedev and S. N. Kazarnovskii, Papers on Chemistry and Chemical Technology, Gor’kii (1959), p. 649.Google Scholar
  235. 14.
    A. V. I1’yasov, Zh. Strukt. Khim. 3, 95 (1962).Google Scholar
  236. 15.
    I. S. Garifyanov, A. V. II’yasov, and Yu. V. Yablokov, Dokl. Akad. Nauk SSSR 149, 876 (1963).Google Scholar
  237. 16.
    A. L. Buchachenko and O. P. Sukhanova, Zh. Strukt. Khim. 6, 32 (1965).Google Scholar
  238. 17.
    Yu. Yu. Samitov and O. L. Lebedev, Physical Problems of Spectroscopy, A Collection of Papers, Moscow (1963), Vol. 2, p. 103.Google Scholar
  239. 18.
    E. Fermi, Z. Physik 60, 320 (1930).Google Scholar
  240. 19.
    G. Dousmanis, Phys. Rev. 97, 967 (1955).Google Scholar
  241. 20.
    M. Heald and R. Beringer, Phys. Rev. 96, 645 (1954).Google Scholar
  242. 21.
    W. Holloway and R. Novick, Phys. Rev. Letters 1, 367 (1958).Google Scholar
  243. 22.
    S. Foner, E. Cochran, V. Bowers, and C. Jen, Phys. Rev. Letters 1, 91 (1958).Google Scholar
  244. 23.
    R. Ward, J. Chem. Phys. 30, 852 (1959).Google Scholar
  245. 24.
    G. Pake, J. Townsend, and S. Weissman, Phys. Rev. 85, 682 (1952).Google Scholar
  246. 25.
    P. Atkins, N. Keen, and M. Symons, J. Chem. Soc. 1962, 2873.Google Scholar
  247. 26.
    G. Coppinger and J. Swallen, J. Am. Chem. Soc. 83, 4900 (1961).Google Scholar
  248. 27.
    J. Baird, J. Chem. Phys. 37, 1879 (1962).Google Scholar
  249. 28.
    C. Luck and W. Gordy, J. Am. Chem. Soc. 78, 3240 (1956).Google Scholar
  250. 29.
    W. Gordy and C. McCormick, J. Am. Chem. Soc. 78, 3243 (1956).Google Scholar
  251. 30.
    B. Smaller and M. Matheson, J. Chem. Phys. 28, 1169 (1958).Google Scholar
  252. 31.
    R. Fessenden and R. Schuller, J. Chem. Phys. 33, 935 (1960).Google Scholar
  253. 32.
    A. McLachlan, Mol. Phys. 1, 233 (1958).Google Scholar
  254. 33.
    E. Stone and A. Maki, J. Chem. Phys. 37, 1326 (1962).Google Scholar
  255. 34.
    I. Miyagama and W. Gordy, J. Chem. Phys. 30, 1590 (1959).Google Scholar
  256. 35.
    M. Symons, J. Chem. Soc. 1963, 1189.Google Scholar
  257. 36.
    Y. Kurita, J. Chem. Phys. 41, 3926 (1964).Google Scholar
  258. 37.
    Y. Kurita, Nippon Kagaku Zasshi 85, 833 (1964).Google Scholar
  259. 38.
    T. Stone and W. Waters, Proc. Chem. Soc. 1962, 253.Google Scholar
  260. 39.
    J. Thomas, J. Am. Chem. Soc. 86, 1446 (1964).Google Scholar
  261. 40.
    M. Betoux, H. Lemaire, and A. Rassat, Bull. Soc. Chim. France 1964, 1985.Google Scholar
  262. 41.
    B. Jerslev, Nature 180, 1410 (1958).Google Scholar
  263. 42.
    A. Maki and D. Geake, J. Am. Chem. Soc. 83, 1853 (1961).Google Scholar
  264. 43.
    A. Hoffmann and A. Henderson, J. Am. Chem. Soc. 83, 4671 (1961).Google Scholar
  265. 44.
    A. Hoffman and W. Hodgson, J. Am. Chem. Soc. 83, 4675 (1961).Google Scholar
  266. 45.
    A. Hoffmann, W. Hodgson, D. Markle, and W. Jura, J. Am. Chem. Soc. 86, 631 (1964).Google Scholar
  267. 46.
    A. Hoffmann, A. Feldman, E. Gelblum, and W. Hodson, J. Am. Chem. Soc. 86, 639 (1964).Google Scholar
  268. 47.
    H. Lemaire, A. Rassat, P. Servoz-Gavin, and G. Berthier, J. Chim. Phys. 1962, 1247.Google Scholar
  269. 48.
    R. Briers and A. Rassat, Bull. Soc. Chim. France 1965, 378.Google Scholar
  270. 49.
    O. L. Lebedev, M. L. Khidekel’, and G. A. Razuvaev, Dokl. Akad. Nauk SSSR 140, 1327 (1961).Google Scholar
  271. 50.
    R. Hazeldine and B. Mattinson, J. Chem. Soc. 1957, 1741.Google Scholar
  272. 51.
    L. Piette and G. Crawford, presented at 142nd National Meeting, American Chemical Society, Atlantic City, New Jersey, Sept. 1962.Google Scholar
  273. 52.
    W. Blackley and R. Reinhard, presented at 148th National Meeting, American Chemical Society, Chicago, Illinois, Sept. 1964.Google Scholar
  274. 53.
    W. Blackley and R. Reinhard, J. Am. Chem. Soc. 87, 802 (1965).Google Scholar
  275. 54.
    S. P. Makarov, A. Ya. Yakubovich, S. S. Dubov, and A. N. Medvedev, Dokl. Akad. Nauk SSSR 160, 1319 (1965).Google Scholar
  276. 55.
    S. P. Makarov, A. Ya. Yakubovich, S. S. Dubov, and A. N. Medvedev, Zh. Uses. Khim. Obchestra im. D. I. Mendeleeva 10, 106 (1965).Google Scholar
  277. 1.
    Piloty and W. Vogel, Ber. 36, 1283 (1903).Google Scholar
  278. 2.
    R. Kuhn, H. Katz, and W. Franck, Naturwiss. 22, 808 (1934).Google Scholar
  279. 3.
    E. Müller and I. Müller-Rodloff, Ber. 69, 665 (1936).Google Scholar
  280. 4.
    W. Hückel, Theoretische Grundlagen der organischen Chemie, Akademische Verlag, Leipzig, 9th ed. (1957)Google Scholar
  281. 5.
    K. Hausser, Z. Naturlorsch. 14a, 425 (1959).Google Scholar
  282. 6.
    C. Hutchison, R. Pastor, and A. Kowalsky, J. Chem. Phys. 20, 534 (1952).Google Scholar
  283. 7.
    R. Kuhn and W. Franke, Ber. 68, 1528 (1935).Google Scholar
  284. 8.
    St. Niementowski, Ber. 43, 3012 (1910).Google Scholar
  285. 9.
    R. Kuhn and W. Blau, Ann. Chern. 615, 99 (1958).Google Scholar
  286. 10.
    M. Colonna and P. Bruni, Atti Accad. Na. Lincei, Rend. Classe Sci. Fis., Mat. Nat. 97, 461 (1964).Google Scholar
  287. 11.
    M. Colonna and P. Bruni, Ga. Chim. Ital. 95, 1172 (1965).Google Scholar
  288. 12.
    M. Colonna and P. Bruni, Atti Accad. Naz. Lincei, Rend. Classe Sci. Fis., Mat. Nat. 40, 872 (1966).Google Scholar
  289. 13.
    J. Greenstein and W. Jenrette, J. Biol. Chem. 142, 175 (1942).Google Scholar
  290. 14.
    J. Greenstein, J. Biol. Chem. 125, 501 (1938).Google Scholar

Copyright information

© Springer Science+Business Media New York 1970

Authors and Affiliations

  • E. G. Rozantsev
    • 1
  • H. Ulrich
    • 2
  1. 1.Institute of Chemical PhysicsAcademy of Sciences of the USSRMoscowUSSR
  2. 2.Donald S. Gilmore Research LaboratoriesThe Upjohn CompanyNorth HavenUSA

Personalised recommendations