Skip to main content

Conditioning: Modification by Peripheral Mechanisms

  • Chapter
Conditioning

Part of the book series: Advances in Behavioral Biology ((ABBI,volume 26))

  • 50 Accesses

Abstract

This paper examines the idea that peripheral hormones, particularly those of the sympatho-adrenal system, are part of the normal machinery of learning and memory. Blood-borne hormones, although widely distributed in the body have very specific actions because of the nature and location of their receptive sites.

Evidence was presented that the adrenal medullary systems are important for 4-OH amphetamine and Met- and Leu-enkephalin effects on avoidance conditioning, because their actions are dependent on the integrity of the adrenal medulla.

Also examined was the question of whether 4-OH amphetamine, Met- and Leu-enkephalin affect avoidance conditioning by acting directly on the brain or at some peripheral site. It was suggested that even though 4-OH amphetamine may be measured in brain following i.p. injection that its action to enhance retention of an inhibitory avoidance response was mediated peripherally. This suggestion was based on a comparison of dose-response effectiveness of amphetamine and 4-OH amphetamine on intracranial self-stimulation behavior and avoidance conditioning and the fact that the effect of 4-OH amphetamine is abolished by adrenal medullectomy. Similarly, it is likely that both Met- and Leu-enkephalin have a primary site of action in the periphery in impairing acquisition of a one-way active avoidance task, because adrenal medullectomy appears to completely abolish the actions of Met-enkephalin and shifts the effective dose of Leuenkephalin to higher doses. However, Leu-enkephalin, which apparently has a site of action distant from the adrenal medulla, did not alter EEG activity at a dose 50 times greater than its behaviorally effective dose also suggesting that Leu-enkephalin has a primary site of action in the periphery.

This research was supported by Research Grants MH 12526 (to James L. McGaugh and Joe L. Martinez, Jr.) from the U.S. Public Health Service and BNS 76-17370 (to James L. McGaugh) from the National Science Foundation. Most of the research reported in this paper was conducted in the laboratories of James L. McGaugh and Henk Rigter. I gratefully acknowledge their collaboration, advice and support. Also, the collaborative work of K. Ishikawa, R. A. Jensen, R. B. Messing, and B. J. Vasquez contributed significantly to this research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, J. P., Kendall, J. W., McGilvra R., and Vancura, C., Immunoreactive ACTH in cerebrospinal fluid, J. Clin. Endocrinol. Metab. 38:586 (1974).

    Article  PubMed  CAS  Google Scholar 

  2. Axelrod, J., Weil-Malberbe, H., and Tomchick, R., The physiological disposition of 3H-epinephrine and its metabolite metanephrine, J. Pharm. Exp. Ther., 127: 251 (1959).

    CAS  Google Scholar 

  3. Ball, G. G., Vagotomy: effect of electrically elicited eating and self-stimulation in the lateral hypothalamus, Science 184: 484 (1974).

    CAS  Google Scholar 

  4. Beaudet, A. and Descarries, L., The monoamine innervation of rat cerebral cortex: synaptic and nonsynaptic axon terminals, Neuroscience 3: 851 (1978).

    CAS  Google Scholar 

  5. Beckwith, B. E. and Sandman, C. A., Behavioral influences of the neuropeptides ACTH and MSH: a methodological review, Neurosci. Biobeh. Rev., 2:311 (1978).

    Google Scholar 

  6. Belluzzi, J. and Martinez, Jr., J. L., Differential actions of dl-amphetamine and dl-4-OH amphetamine on intracranial selfstimulation behavior, in preparation.

    Google Scholar 

  7. Conford, E. M., Braun, L. D., Crane, P. D., and Olendorf, H., Blood-brain barrier restriction of peptides and the low uptake of enkephalins, Endocrinology 103: 1297 (1978).

    Google Scholar 

  8. Conner, R. L. and Levine, S., The effects of adrenal hormones on the acquisition of signaled avoidance behavior, Hor. Behay., 1: 73 (1969).

    Article  CAS  Google Scholar 

  9. Cooper, J. R., Bloom, F. E., and Roth, R. H., “The Biochemical Basis of Neuropharmacology,” Oxford University Press, New York (1978).

    Google Scholar 

  10. de Wied, D., Peptides and behavior, Life Sci., 20: 195 (1977).

    Article  Google Scholar 

  11. Dunn, A., Biochemical correlates of training experiences: A discussion of the evidence, in: “Neural Mechanisms of Learning and Memory,” M. R. Rosenzweiz and E. L. Bennett, eds., The MIT Press, Cambridge (1976).

    Google Scholar 

  12. Dunwiddie, T., Madison, V., and Lynch, G., Synaptic transmission is required for initiation of long-term potentiation, Brain Res., 150: 413 (1978).

    CAS  Google Scholar 

  13. Gold, P. E. and McCarty, R., Plasma catecholamines: changes after footshock and seizure-producing frontal cortex stimulation, Behay. Neur. Biol. 31:247 (1981).

    Google Scholar 

  14. Greenough, W. T., Development and memory: the synaptic connection, in: “Brain and Learning,” T. Teyler, ed., Greylock, Stamford (1978).

    Google Scholar 

  15. Hexum, T. D., Yang, Y.-Y. T., and Costa, E., Biochemical characterization of enkephalin-like immunoreactive peptides of adrenal glands, Life Sci., 27: 1211 (1980).

    CAS  Google Scholar 

  16. Hughes, J., Kosterlitz, H. W., and Smith, T. W., The distribution of methionine-enkephalin and leucine-enkephalin in the brain and peripheral tissues, Brit. J. Pharmacol. 61: 639 (1977).

    CAS  Google Scholar 

  17. Ishikawa, K. and McGaugh, J. L., Simultaneous determination of monoamine transmitters, precursors and metabolites in a single mouse brain, J. Chromatogr. in press.

    Google Scholar 

  18. Javoy, F., Klowinski, J., and Kordon, C., Effects of adrenal-ectomy on the turnover of norepinephrine in the rat brain, Eur. J. Pharmacol. 4: 103 (1968).

    Article  PubMed  CAS  Google Scholar 

  19. Kumakura, K., Karoum, F., Guidotti, A., and Costa, E., Modulation of nicotinic receptors by opiate receptor agonists in cultured adrenal chromaffin cells, Nature 283: 489 (1980).

    CAS  Google Scholar 

  20. Leshner, A. I., “An Introduction to Behavioral Endocrinology,” Oxford University Press, New York (1978).

    Google Scholar 

  21. Levine, S., Hormones and conditioning, in: “Nebraska Symposium on Motivation,” W. J. Arnold, ed., University of Nebraska Press, Lincoln (1968).

    Google Scholar 

  22. Levine, S. and Soliday, S., An effect of adrenal demedullation on the acquisition of a conditioned avoidance response, J. Comp. Physiol. Psychol. 55: 214 (1962).

    Article  PubMed  CAS  Google Scholar 

  23. Martinez, Jr., J. L., Ishikawa, K., Hannan, T., Liang, K. C., Vasquez, B. J., Jensen, R. A., Sternberg, D., Brewton, C., and McGaugh, J. L., Actions of 4 OH-amphetamine on active avoidance conditioning and regional brain concentrations of norepinephrine and dopamine, Soc. Neurosci. Abst. 7 (1981).

    Google Scholar 

  24. Martinez, Jr., J. L., Ishikawa, K., Liang, K. C., Jensen, R. A., Brewton, C., Sternberg, D., Messing, R. B., and McGaugh, J. L., 4-OH amphetamine enhances retention of an active avoidance response in rats and decreases regional brain concentrations of norepinephrine and dopamine, in preparation.

    Google Scholar 

  25. Martinez, Jr., J. L., Jensen, R. A., Creager, R., Veliquette, J. Messing, R. B., McGaugh, J. L., and Lynch G., Selective effects of enkephalin on electrical activity of the in vitro hippocampal slice, Behay. Neur. Biol., 26:128 (1979).

    Google Scholar 

  26. Martinez, Jr., J. L., Jensen, R. A., Messing, R. B., Vasquez, B. J., Soumireu-Mourat, B., Geddes, D., Liang, K. C., and McGaugh, J. L., Central and peripheral actions of amphetamine on memory storage, Brain Res., 182: 157 (1980).

    Article  PubMed  CAS  Google Scholar 

  27. Martinez, Jr., J. L., Jensen, R. A., Vasquez, B. J., Lacob, J. S., McGaugh, J. L., and Purdy, R. E., Acquisition deficits induced by sodium nitrite in rats and mice, Psychopharmcol. 60: 221 (1979).

    CAS  Google Scholar 

  28. Martinez, Jr., J. L., McGaugh, J. L., Hanes, C.L., and Lacob, J. S., Modulation of memory processes induced by stimulation of the entorhinal cortex, Physiol. Behay. 19:139 (1977).

    Google Scholar 

  29. Martinez, Jr., J. L. and Rigter, H., Enkephalin actions on avoidance conditioning may be related to adrenal medullary function, in preparation.

    Google Scholar 

  30. Martinez, Jr., J. L., Rigter, H., Jensen, R. A., Messing, R. B., Vasquez, B. J., and McGaugh, J. L. Endorphin and enkephalin effects on avoidance conditioning: the other side of the pituitary-adrenal axis, in: “Endogenous Peptides and Learning and Memory Processes,” J.L. Martinez, Jr., R. A. Jensen, R. B. Messing, H. Rigter, and J. L. McGaugh, eds. Academic Press, New York (1981).

    Google Scholar 

  31. Martinez, Jr., J. L., Rigter, H., and van der Gugten, J., Enkephalin effects on avoidance conditioning are dependent on the adrenal glands, in: “Endocrinology, Neuroendocrinology, Neuropeptides I.,” E. Stark, G. B. Makara, Zs. Acs, and E. Endröczi, eds., Pergamon Press, London (1981).

    Google Scholar 

  32. Martinez, Jr., J. L., Vasquez, B. J., Rigter, H., Messing, R. B., Jensen, R. A., Liang, K. C., and McGaugh, J. L., Attenuation of amphetamine-induced enhancement of learning by adrenal demedullation, Brain Res., 195: 433 (1980).

    CAS  Google Scholar 

  33. Mason, J. W., Organization of the multiple endocrine responses to avoidance in the monkey, Psychosom. Med. 30: 774 (1968).

    Google Scholar 

  34. Mason, J. W., The integrative approach in medicine - implications of neuroendocrine mechanisms, Perspect. Biol. Med., 17:333 (1974).

    Google Scholar 

  35. McGaugh, J. L. and Martinez, Jr., J. L., Learning modulatory hormones: an introduction to endogenous peptides and learning and memory processes, in: “Endogenous Peptides and Learning and Memory Processes,” J. L. Martinez, Jr., R. A. Jensen, R. B. Messing, H. Rigter, and J. L. McGaugh, eds., Academic Press, New York (1981).

    Google Scholar 

  36. McGaugh, J. L., Martinez, Jr., J. L., Jensen, R. A., Hannan, T. J., Vasquez, B. J., Messing, R. B., Liang, K. C., Brewton, C. B., and Spiehler, V. R., Modulation of memory storage by treatments affecting peripheral catecholamines, in: “Neurobiology of Learning and Memory,” H. Matthies, ed., Raven Press, New York, in press.

    Google Scholar 

  37. Meligeni, J. A., Ledergerber, S. A., and McGaugh, J. L., Norepinephrine attenuation of amnesia produced by diethyldithiocarbamate, Brain Res., 149: 155 (1978).

    CAS  Google Scholar 

  38. Messing, R. B., Vasquez, B. J., Spiehler, V. R., Martinez, Jr., J. L., Jensen, R. A., Rigter, H., and McGaugh, J. L., 3H-Dihydromorphine binding in brain regions of young and aged rats, Life Sci., 26: 921 (1980).

    CAS  Google Scholar 

  39. Moyer, K. E. and Bunnell, B. N., Effect of adrenal demedullation on an avoidance response in the rat, J. Comp. Physiol. Psychol. 52:215 (1959).

    Google Scholar 

  40. Ogren, S. and Fuxe, K., Learning, brain noradrenaline and the pituitary-adrenal axis, Med. Biol. 52: 399 (1974).

    PubMed  CAS  Google Scholar 

  41. Palfai, T. and Walsh, T. J., The role of peripheral catecholamines in reserpine-induced amnesia, Behay. Neur. Biol. 27:423 (1979).

    Google Scholar 

  42. Rapoport, S. I., Klee, W. A., Pettigrew, K. D., and Ohno, K. Entry of opioid peptides into the central nervous system, Science 207: 84 (1980).

    CAS  Google Scholar 

  43. Rigter, H., Attenuation of amnesia in rats by systemically administered enkephalins, Science 200: 83 (1978).

    CAS  Google Scholar 

  44. Rigter, H., Dekker, I., and Martinez, Jr., J. L., A comparison of the ability of opioid peptides and opiates to affect active avoidance conditioning in rats, Regul. Pept. in press.

    Google Scholar 

  45. Rigter, H., Jensen, R. A., Martinez, Jr., J. L., Messing, R. B., Vasquez, B. J., Liang, K. C., and McGaugh, J. L., Enkephalin and fear-motivated behavior, Proc. Nat. Acad. Sci. USA, 77: 3729 (1980).

    Article  CAS  Google Scholar 

  46. Rigter, H., Hannan, T. J., Messing, R. B., Martinez, Jr., J. L., Vasquez, B. J., Jensen, R. A., Veliquette, J., and McGaugh, J. L., Enkephalins interfere with acquisition of an active avoidance response, Life Sci., 26: 337 (1980).

    CAS  Google Scholar 

  47. Roberts, D. S. C. and Fibiger, H. C., Evidence for interactions between central noradrenergic neurons and adrenal hormones in learning and memory, Pharmacol. Biochem. Behay. 7:191 (1977).

    Google Scholar 

  48. Shellenberger, M. K. and Gordon, J. H., A rapid, simplified procedure for simultaneous assay of norepinephrine, dopamine, and 5-hydroxy-tryptamine from discrete brain areas. Analytical Biochemistry 39: 356 (1971).

    Article  PubMed  CAS  Google Scholar 

  49. Silva, M. T. A., Extinction of a passive avoidance response in adrenalectomized and demedullated rats, Behay. Biol., 9: 553 (1973).

    CAS  Google Scholar 

  50. Silva, M. T. A., Effects of adrenal demedullation and adrenalectomy on an active avoidance response of rats, Physiol. Psychol. 2:171 (1974).

    Google Scholar 

  51. Stein, L., Effects and interactions of imipramine, chlorpromazine, reserpine and amphetamine on self-stimulation: possible neurophysiological basis of depression, in: “Recent Advances in Biological Psychiatry,” Vol. 4, J. Wortis, ed., Plenum Press, New York (1962).

    Google Scholar 

  52. Stein, L., Norepinephrine reward pathways: role in self-stimulation, memory consolidation, and schizophrenia, University of Nebraska Press, Lincoln (1974).

    Google Scholar 

  53. Stein, L., Belluzzi, J. D., and Wise, C. D., Memory enhancement by central administration of norepinephrine, Brain Res., 84: 329 (1975).

    CAS  Google Scholar 

  54. Sternberg, D. B. and Gold, P. E., Effects of a-and ß-adrenergic receptor antagonists on retrograde amnesia produced by frontal cortex stimulation, Behay. Neur. Biol. 29:289 (1980).

    Google Scholar 

  55. Sutherland, E. W., Studies on the mechanism of hormone action, Science 177: 401 (1972).

    CAS  Google Scholar 

  56. Thompson, R. F., Patterson, M. M., and Berger T., Associative learning in the mammalian nervous system, in: “Brain and Learning,” T. Teylor, ed., Greylock, Stamford (1978).

    Google Scholar 

  57. Urca, G., Frenk, H., Liebeskind, J. C., and Taylor, A. N., Morphine and enkephalin: analgesic and epileptic properties, Science 197: 83 (1977).

    CAS  Google Scholar 

  58. Viveros, O. H., Diliberto, Jr., E. J., Hazum, E., and Chang, K.-J., Opiate-like meterials in the adrenal medulla: evidence for storage and secretion with catecholamines, Molec. Pharmacol. 16:1101 (1979).

    Google Scholar 

  59. Walsh, T. J. and Palfai, T., Peripheral catecholamines and memory: characteristics of syrosingopine-induced amnesia, Pharmacol. Biochem. Behay. 11:449 (1979).

    Google Scholar 

  60. Weindl, A. and Sofroniew, M. V., Relation of neuropeptides to mammalian circumventricular organs, in: “Neurosecretion and Brain Peptides,” J. B. Martin, S. Reichin, and K. L. Bick, eds., Raven Press, New York (1981).

    Google Scholar 

  61. Wise, C. D. and Stein, L., Facilitation of brain self-stimulation by central administration of norepinephrine, Science 163: 299 (1969).

    CAS  Google Scholar 

  62. Witter, A., Gispen, W. H., and de Wied, D., Mechanisms of action of behaviorally active ACTH-like peptides, in: “Endogenous Peptides and Learning and Memory Processes,” J. L. Martinez, Jr., R. A. Jensen, R. B. Messing, H. Rigter, and J. L. McGaugh, eds., Academic Press, New York (1981).

    Google Scholar 

  63. Yang, H.-Y. T., Hexum, T., and Costa, E. Opioid peptides in adrenal gland, Life Sci., 27: 1119 (1980).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer Science+Business Media New York

About this chapter

Cite this chapter

Martinez, J.L. (1982). Conditioning: Modification by Peripheral Mechanisms. In: Woody, C.D. (eds) Conditioning. Advances in Behavioral Biology, vol 26. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0701-4_40

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0701-4_40

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0703-8

  • Online ISBN: 978-1-4757-0701-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics