Skip to main content

Long Term Modulation of Intrinsic Membrane Properties of Hippocampal Neurons

  • Chapter

Part of the book series: Advances in Behavioral Biology ((ABBI,volume 26))

Summary

We studied the mechanisms of action of acetylcholine (ACh) and dopamine (DA) on hippocampal CA1 pyramidal cells of the in vitro slice preparation. ACh caused an initial hyperpolarization in half the cells studied which was eliminated when synaptic transmission was blocked and was therefore presynaptic in origin. Muscarinic excitation was evoked in all neurons and consisted of slow depolarization and a voltage-sensitive increase in membrane resis-tance (RN) which resulted from antagonism of a voltage-dependent K+ conductance. RN increases lasted hours after a single ACh application and concomitant changes in cell firing mode from single sp+kes to burst generation occurred. This long term effect was Ca dependent. DA application resulted in spontaneous hyperpolarization and an increase in the amplitude and duration of the afterhyperpolarizations (AHPs) which normally follow repetitive spiking. These effects were long-lasting and associated with up to a 22% decrease in RN. DA-induced hyperpolarizations persisted in cells impaled with C1 -containing electrodes and had a reversal potential of about −87 mV, findings consistent with an increased K+ conductance. Mn2+ blocked the spontaneous or evoked hyperpolarizations produced by DA (1 μM), ho ver Wger volume DA applications were effective even in low Ca2+, Mn2+ -containing solutions. Intracellular EGTA blocked all DA actions. DA effects were mimicked by DA agonists and by intra- or extracellular application of cAMP, and blocked by DA antagonists. We conclie that DA actions are medied by effect on intracellular [Ca2+] which in turn modulates a Ca2+ -activated K+ conductance. The long term nature of these actions may relate to receptor coupled increases in cAMP.

ACh and DA are neuromodulators which produce long term alterations is intrinsic call properties and would be expected to effectively alter the influences of other afferent systems. The implications for learning and memory are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I. Kupferman, Modulatory actions of neurotransmitters, Ann. Rev. Neurosci. 2: 447–465 (1979).

    Article  Google Scholar 

  2. R. Dingledine, J. Dodd, and J.S. Kelly, The in vitro brain slice as a useful neurophysiological preparation for intracellular recording, Neurosci. Meth. 2: 323–362 (1980).

    Article  CAS  Google Scholar 

  3. P. Andersen and I.A. Langmoen, Intracellular studies on trans- mitter effects on neurones in isolated brain slices, Quart. Rev. of Biophys. 13: 1–18 (1980).

    Article  CAS  Google Scholar 

  4. E.R. Kandel and W.A. Spencer, Electrophysiology of hippocampal neurons. II. Afterpotentials and repetitive firing. J. Neurophysiol. 24: 243–259 (1961).

    PubMed  CAS  Google Scholar 

  5. E.R. Kandel, W.A. Spencer, and J.F. Brinley, Jr., Electro- physiology of hippocampal neurons. I. Sequential invasion and synaptic organization, J. Neurophysiol. 24: 225–242 (1961).

    PubMed  CAS  Google Scholar 

  6. W.A. Spencer and E.R. Kandel, Electrophysiology of hippocampal neurons. III. Fast prepotentials, J. Neurophysiol. 24: 272–285 (1961).

    Google Scholar 

  7. P.A. Schwartzkroin, Characteristics of CAl neurons recorded intracellularly in the hippocampal in vitro slice preparation, Brain Res. 128: 53–68 (1975).

    Article  Google Scholar 

  8. J.D. Green, The hippocampus, Physiol. Rev. 44: 561–608 (1964).

    PubMed  CAS  Google Scholar 

  9. R.F. Thompson, M.M. Patterson, and T.J. Teyler, Neurophysiology of learning, Ann. Rev. Psychol. 23: 73–104 (1972).

    Article  CAS  Google Scholar 

  10. R.L. Isaacson, The Limbic System, Plenum Press, New York (1974).

    Book  Google Scholar 

  11. R.L. Isaacson and K.H. Pribram, The Hippocampus (2 Vols.), Plenum Press, New York (1975).

    Book  Google Scholar 

  12. C. Yamamoto, Intracellular study of seizure-like afterdischarges elicited in thin hippocampal sections in vitro, Exp. Neurol. 35: 154–164 (1972).

    Article  CAS  Google Scholar 

  13. L.S. Benardo and D.A. Prince, Acetylcholine induced modulation of hippocampal pyramidal neurons, Brain Res. 211: 227–234 (1981).

    Article  PubMed  CAS  Google Scholar 

  14. K. Krnjevic, R. Pumain, and L. Renaud, The mechanism of excitation by acetylcholine in the cerebral cortex, J. Physiol. 215: 447–465 (1971).

    Google Scholar 

  15. J. Dodd, R. Dingledine, and J.S. Kelly, The excitatory action of acetylcholine on hippocampal neurones of the guinea pig and rat maintained in vitro, Brain Res. 207: 109–127 (1981).

    Article  CAS  Google Scholar 

  16. F.F. Weight and J. Votava, Slow synaptic excitation in sympathetic ganglion cells: evidence for synaptic inactivation of potassium conductance, Science 170: 755–758 (1970).

    Article  PubMed  CAS  Google Scholar 

  17. D.A. Brown and P.R. Adam, Muscarinic suppression of a novel voltage-sensitive K current in a vertebrate neurone, Nature, Lond. 283: 673–676 (1980).

    Article  CAS  Google Scholar 

  18. I. Kupferman, Role of cyclic nucleotides in excitable cells, Ann. Rev. Physiol. 42: 629–641 (1980).

    Article  Google Scholar 

  19. K. Krnjevic, Chemical nature of synaptic transmission in vertebrates, Physiol. Rev. 54: 419–540 (1974).

    Google Scholar 

  20. J.R. Hotson, D.A. Prince, and P.A. Schwartzkroin, Anomalous inward rectification in hippocampal neurons, J. Neurophysiol. 42: 889–895 (1979).

    PubMed  CAS  Google Scholar 

  21. J.R. Hotson and D.A. Prince, A calcium activated hyperpolarization follows repetitive firing in hippocampal neurons, J. Neurophysiol. 43: 409–419 (1980).

    PubMed  CAS  Google Scholar 

  22. M.J. Gutnick and D.A. Prince, Dye-coupling and possible electrotonic coupling in the guinea pig neocortex, Science 211: 67–70 (1981).

    Article  PubMed  CAS  Google Scholar 

  23. P.A. Schwartzkroin and D.A. Prince, Effects of TEA on hippocampal neurons, Brain Res. 185: 169–181 (1980).

    Article  PubMed  CAS  Google Scholar 

  24. J.V. Halliwell, P.R. Adams, and D.A. Brown, “M” and “F” currents in voltage-clamped hippocampal pyramidal cells, Biophys. J. 33: 90a (1981).

    Google Scholar 

  25. R.K.S. Wong and D.A. Prince, Participation of calcium spikes during intrinsic burst firing in hippocampal neurons, Brain Res. 159: 385–390 (1978).

    CAS  Google Scholar 

  26. B.E. Alger and R.A. Nicoll, Epileptiform burst afterhyperpolarization: calcium-dependent potassium potential in hippocampal CA1 pyramidal cells, Science 210: 1122–1124 (1980).

    Article  PubMed  CAS  Google Scholar 

  27. D.A. Prince and P.A. Schwartzkroin, Non-synaptic mechanisms in epileptogenesis, in: Abnormal Neuronal Discharges, N. Chalazonitis and M. Boisson, eds., Raven Press, New York (1978).

    Google Scholar 

  28. R.K.S. Wong, D.A. Prince, and A.I. Basbaum, Intradendritic recordings from hippocampal neurons, Proc. Nat. Acad. Sci. (Wash.) 76: 986–990 (1979).

    Article  CAS  Google Scholar 

  29. P.A. Schwartzkroin and D.A. Prince, Penicillin-induced epileptiform activity in the hippocampal in vitro preparation, Ann. Neurol. 1: 463–469 (1977).

    Article  PubMed  CAS  Google Scholar 

  30. R.J. Valentino and R. Dingledine, Presynaptic inhibitory effect of acetylcholine in the hippocampus, J. Neurosci. 1: 784792 (1981).

    Google Scholar 

  31. R.K.S. Wong and D.A. Prince, Dendritic mechanisms underlying penicillin-induced epileptiform activity, Science 204: 1228–1231 (1979).

    Article  PubMed  CAS  Google Scholar 

  32. J.W. Phillis, The role of cyclic nucleotides in the CNS, Can. J. Neurol. Sci. 4: 151–195 (1977).

    PubMed  CAS  Google Scholar 

  33. F.F. Weight, G. Petzhold, and P. Greengard, Guanosine 3’,5’monophosphate in sympathetic ganglia: increase associated with synaptic transmission, Science 186: 942–944 (1974).

    Article  PubMed  CAS  Google Scholar 

  34. C.D. Woody, B.E. Swartz, and E. Gruen, Effects of acetylcholine and cyclic GMP on input resistance of cortical neurons in awake cats, Brain Res. 158: 373–395 (1978).

    Article  PubMed  CAS  Google Scholar 

  35. N.J. Dun, K. Kaibara and A.G. Karczmar, Muscarinic cGMP induced membrane potential changes: differences in electrogenic mechanisms, Brain Res. 150: 658–661 (1978).

    Article  PubMed  CAS  Google Scholar 

  36. K. Krnjevic, Intracellular actions of a transmitter, in: Iontophoresis and Transmitter Mechanisms in the Mammalian Central Nervous System, R.W. Ryall and J.S. Kelly, eds., Elsevier, Amsterdam (1978).

    Google Scholar 

  37. F.F. Weight, P.A. Smith, and J.A. Schulman, Postsynaptic potential generation appears not to be associated with synaptic elevation of cyclic nucleotides in sympathetic neurons, Brain Res. 158: 197–202 (1978).

    Article  PubMed  CAS  Google Scholar 

  38. L.W. Swanson and B.K. Hartman, The central adrenergic system. An immunofluorescence study of the location of cell bodies and their efferent connections in the rat utilizing dopamine-ß-hydroxylase as a marker, J. Comp. Neurol. 163: 467–505 (1975).

    Article  PubMed  CAS  Google Scholar 

  39. S. Bischoff, B. Scatton, and J. Korf, Biochemical evidence for a transmitter role of dopamine in the rat hippocampus, Brain Res. 165: 161–165 (1979).

    Article  PubMed  CAS  Google Scholar 

  40. T. Hokfelt, A. Ljungdalal, K. Fuxe, and O. Johansson, Dopamine nerve terminals in the rat limbic cortex: aspects of the dopamine hypothesis of schizophrenia, Science 184: 177–179 (1974).

    Article  PubMed  CAS  Google Scholar 

  41. B. Scatton, H. Simon, M. LeMoal, and S. Bischoff, Origin of dopaminergic innervation of the rat hippocampal formation, Neurosci. Lett. 18: 125–131 (1980).

    Article  PubMed  CAS  Google Scholar 

  42. A. Dolphin and J. Bockaert, ß-adrenergic receptors coupled to adenylate cyclase in cat brain: regional distribution, pharmacological characteristics and adaptive responsiveness, in: Recent Advances in the Pharmacology of Adrenoreceptors E. Szabadi et al., eds., Elsevier, Amsterdam (1981), in press.

    Google Scholar 

  43. R.K.S. Wong and D.A. Prince, Afterpotential generation in hippocampal pyramidal cells, J. Neurophysiol. 45: 86–97 (1981).

    PubMed  CAS  Google Scholar 

  44. P. Andersen, R. Dingledine, L. Gjerstad, I.A. Langmoen, and A. Mosfeldt-Laursen, Two different responses of hippocampal pyramidal cells to application of gamma-aminobutyric acid, J. Physiol. Lond. 305: 279–296 (1980).

    PubMed  CAS  Google Scholar 

  45. B.E. Alger and R.A. Nicoll, Enkephalin blocks inhibitory pathways in the vertebrate CNS, Nature 281: 315–317 (1979).

    Article  PubMed  CAS  Google Scholar 

  46. M. Segal, The action of norepinephríne in the rat hippocampus: intracellular studies in the slice preparation, Brain Res. 206: 107–128 (1981).

    Article  PubMed  CAS  Google Scholar 

  47. J.K.S. Jansen and J.G. Nicholls, Conductance changes, an electrogenic pump and the hyperpolarization of leech neurones following impulses, J. Physiol. Lond. 229: 635–655 (1973).

    PubMed  CAS  Google Scholar 

  48. J.M. Godfraind, H. Kawamura, K. Krnjevic, and R. Pumain, Actions of dinitrophenol and some other metabolic inhibitors on cortical neurones, J. Physiol. Lond. 215: 199–222 (1971).

    PubMed  CAS  Google Scholar 

  49. B.L. Ginsborg, C.R. House and M.R. Mitchell, On the role of calcium in the electrical responses of the cockroach salivary gland cells to dopamine, J. Physiol. Lond. 303: 325–335 (1980).

    PubMed  CAS  Google Scholar 

  50. R.W. Meech, Calcium-dependent potassium activation in nervous tissue, Ann. Rev. Biophys. Bioeng. 7: 1–18 (1978).

    Article  CAS  Google Scholar 

  51. P.A. Schwartzkroin and C.E. Stafstrom, Effects of EGTA on the calcium-activated afterhyperpolarization in hippocampal CA3 pyramidal cells, Science 210: 1125–1126 (1980).

    Article  PubMed  CAS  Google Scholar 

  52. G.S. Lynch, G. Rose and C.M. Gall, Anatomical and functional aspects of the septo-hippocampal projections, in: Functions of the Septo-Hippocampal System, K. Elliot and J. Whelan, eds, Elsevier, Amsterdam (1978).

    Google Scholar 

  53. K. Elliot and J. Whelan, Functions of the Septo-Hippocampal System, Elsevier, Amsterdam (1978).

    Book  Google Scholar 

  54. C. Yamamoto and N. Kawai, Presynaptic action of acetylcholine on thin sections from the guinea-pig dentate gyrus in vitro, Exp. Neurol. 19: 176–187 (1967).

    Article  CAS  Google Scholar 

  55. J. Hounsgaard, Presynaptic inhibitory action of acetylcholine in area CA1 of the hippocampus, Exp. Neurol. 62: 787–797 (1978).

    Article  PubMed  CAS  Google Scholar 

  56. J.F. DeFrance, J.C. Stanley, J.E. Marchand, and R.B. Chronister, Cholinergic mechanisms and short-term potentiation, in: Functions of the Septo-Hippocampal System, K. Elliot and J. Whelan, eds., Elsevier, Amsterdam (1978).

    Google Scholar 

  57. I.R. Phines and M. Nickerson, Atropine, scopolamine, and related antimuscarinic drugs, in: The Pharmacological Basis of Experimental Therapeutics, L.S. Goodman and A. Gilman, eds., MacMillan, New York (1975).

    Google Scholar 

  58. S.D. Berry and R.F. Thompson, Medial septal lesions retard classical conditioning of the nictitating membrane response in rabbits, Science 205: 209–210 (1979).

    Article  PubMed  CAS  Google Scholar 

  59. J.H. Ferguson and H.H. Jasper, Laminar DC studies of acetylcholine activated epileptiform discharge in cerebral cortex, Electroenceph. Clin. Neurophysiol. 30: 377–390 (1971).

    Article  PubMed  CAS  Google Scholar 

  60. A.G. Nasello and E.S. Marichich, Effects of some cholinergic, adrenergic and serotonergic compounds, glutamic acid, and GABA on hippocampal seizures, Pharmacology 9: 233–239 (1973).

    Article  PubMed  CAS  Google Scholar 

  61. D.A. Prince, B.W. Connors, and L.S. Benardo, Transitions from interictal to ictal epileptiform discharge, in: International Symposium on Status Epilepticus (1981), in press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer Science+Business Media New York

About this chapter

Cite this chapter

Benardo, L.S., Prince, D.A. (1982). Long Term Modulation of Intrinsic Membrane Properties of Hippocampal Neurons. In: Woody, C.D. (eds) Conditioning. Advances in Behavioral Biology, vol 26. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0701-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0701-4_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0703-8

  • Online ISBN: 978-1-4757-0701-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics