Skip to main content

A Biophysical Basis for Molluscan Associative Learning

  • Chapter
Conditioning

Part of the book series: Advances in Behavioral Biology ((ABBI,volume 26))

Abstract

The nudibranch mollusc Hermissenda crassicornis can be conditioned to change its normal positive phototactic behavior. This behavioral change is pairing specific (i.e. paired but not randomly associated light and rotation produce the change), stimulus specific, increases as a function of practice and is of long-duration (at least three to five days). The synaptic relations of identified neurons within the sensory pathways which mediate this behavior have been described in considerable detail at every stage of neural integration: sensory, interneuron, and motorneuron. With this knowledge of neural systems from input of environmental stimuli to output of animal movement, membrane changes of specific neurons were implicated as primary steps in a causal sequence responsible for the conditioning. In summary, repeated stimulus pairing results in short-term cumulative membrane depolarization (associated with elevated intracellular Ca++) of the Type B photoreceptor. This cumulative depolarization results in long-term inactivation of an early voltage-dependent outward K+ current. This inactivation causes enhanced depolarizing responses of the Type B cells and, sequentially, increased inhibition of ipsilateral Type A cells, ipsilateral hair cells, interneurons and motorneurons, and ultimately retarded photo-taxis. This causal sequence is contrasted with those responsible for short-term behavioral changes such as reflex facilitation and sensitization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acosta-Urquidi, J., Alkon, D.L., Olds, J., Neary, J.T., Zebley, E., and Kuzma, G., 1981, Intracellular protein kinase injection simulates biophysical effects of associative learning on Hermissenda photoreceptors. Soc. Neurosci. 7: 944.

    Google Scholar 

  • Akaike, T., and Alkon, D.L., 1980, Sensory convergence on central visual neurons in Hermissenda J. Neurophysiol. 44: 501.

    CAS  Google Scholar 

  • Alkon, D.L., 1973a, Intersensory interactions in Hermissenda J. Gen. Physiol. 62:185.

    Google Scholar 

  • Alkon, D.L., 1973b, Neural organization of a molluscan visual system, J. Gen. Physiol. 61:444.

    Google Scholar 

  • Alkon, D.L., 1974a, Associative training of Hermissenda J. Gen. Physiol. 64: 70.

    Article  PubMed  CAS  Google Scholar 

  • Alkon, D.L., 1974b, Sensory interactions in the nudibranch mollusc Hermissenda crassicornis, Fed. Proc. 33:1083.

    Google Scholar 

  • Alkon, D.L., 1975, Neural correlates of associative training in Hermissenda J. Gen. Physiol. 65: 46.

    Article  PubMed  CAS  Google Scholar 

  • Alkon, D.L., 1976a, Neural modification by paired sensory stimuli, J. Gen. Physiol.. 68: 341.

    Google Scholar 

  • Alkon, D.L., 1976b, The economy of photoreceptor function in a primitive nervous system, in “Neural Principles in Vision”, F. Zettler and R. Weiler, eds., Springer-Verlag, New York, pp. 410–426.

    Chapter  Google Scholar 

  • Alkon, D.L., 1979, Voltage-dependent calcium and potassium ion conductances: A contingency mechanism for an associative learning model, Science 205: 810.

    CAS  Google Scholar 

  • Alkon, D.L., 1980a, Cellular analysis of a gastropod (Hermissenda crassicornis) model of associative learning, Biol. Bull. 159:505.

    Google Scholar 

  • Alkon, D.L., 1980b, Membrane depolarization accumulates during acquisition of an associative behavioral change, Science 210:1375.

    Google Scholar 

  • Alkon, D.L., Akaike, T., and Harrigan, J.F., 1978, Interaction of chemosensory, visual and statocyst pathways in Hermissenda. J. Gen. Physiol. 71: 177.

    Google Scholar 

  • Alkon, D.L. and Fuortes, M.G.F., 1972, Responses of photoreceptors in Hermissenda J. Gen. Physiol. 60:631.

    Google Scholar 

  • Alkon, D.L., Lederhendler, I., and Shoukimas, J.J., 1982, Primary changes of membrane currents during associative learning, Science in press.

    Google Scholar 

  • Crow, T.J. and Alkon, D.L., 1978, Retention of an associative behavioral change in Hermissenda, Science 201:1239.

    Google Scholar 

  • Crow, T.J. and Alkon, D.L., 1980, Associative behavioral modification in Hermissenda: Cellular correlates, Science 209: 412.

    CAS  Google Scholar 

  • Crow, T. and Offenbach, N., 1979, Response specificity following behavioral training in the nudibranch mollusk Hermissendacrassicornis, Biol. Bull. 157:364.

    Google Scholar 

  • Farley, J. and Alkon, D.L., 1980, Neural organization predicts stimulus specificity for a retained associative behavioral change, Science 210: 1373.

    CAS  Google Scholar 

  • Farley, J. and Alkon, D.L., 1981, Associative neural and behavioral change in Hermissenda: Consequences of nervous system orientation for light-and pairing-specificity, Soc. Neurosci. 7: 352.

    Google Scholar 

  • Klein, M. and Kandel, E.R., 1980, Mechanism of calcium current modulation underlying presynaptic facilitation and behavioral sensitization in Aplysia, Proc. Nat. Acad. Sci. USA 77:6912.

    Google Scholar 

  • Lederhendler, I.I., Barnes, E.S., and Alkon, D.L., 1980, Complex responses to light of the nudibranch Hermissenda crassicornis. Behay. Neural Biol. 2’8:218.

    Google Scholar 

  • Neary, J.T., Crow, T., and Alkon, D.L., 1981, Change in a specific phosphoprotein band following associative learning in Hermissenda. Nature 293:658.

    Google Scholar 

  • Shoukimas, J.J. and Alkon, D.L., 1980, Voltage-dependent, early outward current in a photoreceptor of Hermissenda crassicornis. Soc. Neurosci. 6:17.

    Google Scholar 

  • West, A., Barnes, E., and Alkon, D.L., 1981, Primary neuronal changes are retained after associative learning, Biophys. J., 33: 93a.

    Google Scholar 

  • West, A., Barnes, E., and Alkon, D.L., 1982, Primary neuronal changes during retention of associatively learned behavior, J. Neurophysiol. in press.

    Google Scholar 

  • Zucker, R.S., 1982, Processes underlying one form of synaptic plasticity: facilitation, in, “Conditioning: representations of involved neural function”, C. Woody, ed., Plenum Pub. Corp., New York, in press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer Science+Business Media New York

About this chapter

Cite this chapter

Alkon, D.L. (1982). A Biophysical Basis for Molluscan Associative Learning. In: Woody, C.D. (eds) Conditioning. Advances in Behavioral Biology, vol 26. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0701-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0701-4_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0703-8

  • Online ISBN: 978-1-4757-0701-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics