Monooxygenase and Epoxide Hydrolase Regulation in Primary Fetal Rat Liver Cell Culture

  • J. E. Gielen
  • J. De Graeve
  • Fr. Goujon
  • P. Kremers
  • J. Van Cantfort
Part of the Advances in Experimental Medicine and Biology book series (AEMB)

Abstract

It is now well documented that in most instances, the production and accumulation of reactive intermediates in a living organism depend upon the relative activity of several enzymes (for review, see 1,2,3). Qualitative or quantitative modifications of these enzymatic activities might thus lead either to an enhancement or a decrease in the toxicity of a given chemical. Precise knowledge of the biochemical mechanisms which control these enzymatic systems could be of paramount importance if one wants to predict or modify the biological potential of cells to produce active metabolites.

Keywords

Hydrocortisone Testosterone Dexamethasone Glucocorticoid Estradiol 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Heidelberger, Chemical Carcinogenesis, Ann. Rev. Biochem., 44: 79 (1975).PubMedCrossRefGoogle Scholar
  2. 2.
    E.C. Miller and J.A. Miller, The metabolism of chemical carcinogens to reactive electrophiles and their possible mechanism of action in carcinogenesis, in: “Chemical Carcinogens,” C.E. Searle, ed.,ACS Monograph 173, pp 737–762, Washington D.C. (1976).Google Scholar
  3. 3.
    E.K. Weisburger, Mechanisms of chemical carcinogenesis, Ann. Rev. Pharmacol.Toxicol., 18: 395 (1978).CrossRefGoogle Scholar
  4. 4.
    J.R. Fry and J.W. Bridges, The metabolism of xenobiotics in cell suspensions and cell cultures, in: “Progress in Drug Metabolism;’J.W. Bridges and L.F. Chasseau, Eds, John Wiley and Sons, pp 71–118, London (1977).Google Scholar
  5. 5.
    J.R. Fry, P. Wiebkin and J.W. Bridges, 7-ethoxycoumarin 0-deethylase induction by phenobarbitone and 1,2benzanthracene in primary maintenance cultures of adult rat hepatocytes, Biochem. Pharmacol., 29: 577 (1980).Google Scholar
  6. 6.
    D.M. Bissel, L.E. Hammaker and U.A. Meyer, Parenchymal cells from adult rat liver in nonproliferating mono-layer culture. I. Functional studies, J. Cell. Biol., 59: 722 (1973).CrossRefGoogle Scholar
  7. 7.
    W.E. Falhl, G. Michalopoulos, G.L. Sattler, C.R. Jefcoate and H.C. Pitot, Characteristics of microsomal enzyme controls in primary cultures of rat hepatocytes, Arch. Biochem. Biophys., 192: 61 (1979).CrossRefGoogle Scholar
  8. 8.
    G.M. Decad, D.P.H. Hsieh, J.L. Byard, Maintenance of cytochrome P450 and metabolism of aflatoxin in primary hepatocytes cultures. Biochem. Biophys. Res. Commun., 78: 279 (1977).PubMedCrossRefGoogle Scholar
  9. 9.
    F.M. Goujon, J. Van Cantfort, J.E. Gielen, Comparison of aryl hydrocarbon hydroxylase and epoxide hydratase induction in primary fetal rat liver cell, Chem.-Biol. Interact., 31: 19 (1980).CrossRefGoogle Scholar
  10. 10.
    I.S. Owens and D.W. Nebert, Aryl hydrocarbon hydroxylase induction in mammalian liver-derived cell cultures. Stimulation of cytochrome P1–450 associated enzyme activity by many inducing compounds, Mol. Pharmacol., 11: 94 (1975).Google Scholar
  11. 11.
    D.W. Nebert and H.V. Gelboin, Substrate-inducible microsomal aryl hydroxylase in mammalian cell culture. I. Assay and properties of induced enzyme, J. Biol. Chem., 243: 6242, (1968).Google Scholar
  12. 12.
    J. De Graeve, P. Kremers, C. Frankinet and J.E. Gielen, A new highly sensitive assay for ethoxycoumarin deethylase in cultured hepatocytes, Anal. Biochem., 140: 419 (1980).Google Scholar
  13. 13.
    T. Wolff, E. Deml and H. Wanders, Aldrin epoxidation, a highly sensitive indicator specific for cytochrome P450 dependent monooxygenase activities, Drug Metab. Disposit. 7: 301 (1979).Google Scholar
  14. 14.
    H.U. Schmassmann, H.R. Glatt and F. Oesch, A rapid assay for epoxide hydratase activity with benzo(a)pyrene-4,5-(K-region)oxide as substrate, Anal. Biochem., 74: 94 (1976).Google Scholar
  15. 15.
    V. Ullrich, P. Weber and P. Wollenberg, Tetrahydrofurane. An induced liver microsomal cytochrome P-450. Biochem. Biophys. Res. Commun., 64: 808 (1975).PubMedCrossRefGoogle Scholar
  16. 16.
    P.G. Holt and I.T. Oliver, Plasma corticosterone in the perinatal rat, Biochem. J., 108: 339 (1968).PubMedGoogle Scholar
  17. 17.
    G.J. Dutton, Developmental aspects of drug conjugation, with special reference to glucuronidation, Ann. Rev. Pharmacol. Toxicol., 18: 17 (1978).CrossRefGoogle Scholar
  18. 18.
    J.E.A. Leakey and J.R. Fouts, Precocious development of cytochrome P-450 in neonatal rat liver after glucocorticoid treatment, Biochem. J., 182: 233 (1979).Google Scholar
  19. 19.
    M. Lambiotte and J. Sjövall, Hydroxylation and sulfation of bile acids in rat hepatoma cultures under the influence of a glucocorticoid, Biochem. Biophys, RPS. Commun., 86: 1089 (1979).Google Scholar
  20. 20.
    F.J. Wiebel, T. Wolff and M. Lambiotte, Presence of cytochrome P-450 and P-448 dependent monooxygenase functions in hepatoma cell lines, Biochem. Biophys. Res. Commun., 94: 466 (1980).CrossRefGoogle Scholar
  21. 21.
    R.A. Omura and R. Sato, The carbon monoxide-binding pigment of liver microsomes. I. Evidence for its hemoprotein nature, J. Biol. Chem., 239: 2370 (1964).Google Scholar

Copyright information

© Springer Science+Business Media New York 1982

Authors and Affiliations

  • J. E. Gielen
    • 1
  • J. De Graeve
    • 1
  • Fr. Goujon
    • 1
  • P. Kremers
    • 1
  • J. Van Cantfort
    • 1
  1. 1.Laboratoire de Chimie Médicale et de Toxicologie Institut de PathologieUniversité de LiègeSart Tilman par Liège 1Belgium

Personalised recommendations