Advertisement

Covalent Binding of Haloethylenes

  • H. M. Bolt
  • J. G. Filser
  • R. J. Laib
Part of the Advances in Experimental Medicine and Biology book series (AEMB)

Abstract

Halogenated ethylenes are metabolized to reactive intermediates which covalently bind to different cellular targets.

Vinyl chloride and vinyl bromide metabolites bind to DNA, preferably to N-7 of deoxyguanosine. With RNA, 1,N6-ethenoadenosine and 3,N4-ethenocytidine moieties are formed.

All the haloethylenes in which this effect has been studied form metabolites capable of alkylating proteins, preferably at free sulfhydryl groups.

Also, there is alkylation by haloethylene metabolites of cellular coenzymes. An observed increased exhalation of acetone by rats exposed to different haloethylenes can possibly be explained by alkylation of cytosolic coenzyme A. Such metabolic effects may serve as an indicator for reactive metabolite formation in vivo and should be more investigated.

Keywords

Vinyl Chloride Vinylidene Chloride Covalent Binding Reactive Metabolite Vinylidene Fluoride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allemand, H., Pessayre, D., Descatoire, V., Degott, C., Feldmann, G., Benhamou, J.P.: Metabolic activation of trichloroethylene into a chemically reactive metabolite toxic to the liver. J. Pharmacol. Exp. Ther. 204, 714–723 (1978)Google Scholar
  2. Andersen, M.E., Jones, R.A., Jenkins, L.J.: The acute toxicity of single, oral doses of 1,1-dichloroethylene in the fasted male rat. Toxicol. App. Pharmacol. 46, 227–234 (1978)Google Scholar
  3. Banerjee, S., Van Duuren, B.L.: Covalent binding of the carcinogen trichloroethylene in hepatic microsomal proteins and to exogenous DNA in vitro. Cancer Res. 38, 776–780 (1978)Google Scholar
  4. Barbin, A., Bresil, H.; Croisy, A., Jacquinon, P., Mallaveille, C., Montesano, R., Bartsch, H.: Liver microsomes mediated formation of alkylating agents from vinyl bromide and vinyl chloride. Biochem. Biophys. Res. Commun. 67, 596–603 (1975)Google Scholar
  5. Bartsch, H., Malaveille, C., Barbin, A., Planche, G.: Mutagenic and alkylating metabolites of haloethylenes, chlorobutadienes and dichlorobutenes produced by rodent or human liver tissue. Arch. Toxicol. 41, 249–277 (1979)Google Scholar
  6. Bolt, H.M.: Metabolic activation of halogenated ethylenes. In:“Primary Liver Tumors; Remmer, H., Bolt, H.H., Bannasch, P., Popper, H., eds., p. 285–294. MTP Press, Lancaster, U.K. (1978)Google Scholar
  7. Bolt, H.M.: Die toxikologische Beurteilung halogenierter Athylene. Arbeitsmedizin-Sozialmedizin-Präventivmedizin 15, 49–53 (1980)Google Scholar
  8. Bolt, H.M., Buchter, A., Wolowski, L., Gil, D.L., Bolt, W.: Incubation of 14C-trichloroethylene vapor with rat liver microsomes: uptake of radioactivity and covalent protein binding of metabolites. Int. Arch. Env. Occup. Hlth. 39, 103–111 (1977)Google Scholar
  9. Bolt, H.M., Filser, J.G., Hinderer, R.K.: Rat liver microsomal uptake and irreversible protein binding of 1,2-14C-vinyl bromide. Toxicol. Appl. Pharmacol. 44, 481–489 (1978)Google Scholar
  10. Bolt, H.M., Laib, R.J.: Covalent binding of drug metabolites to DNA - a tool of predictive value? Arch. Toxicol. in press (1980)Google Scholar
  11. Bolt, H.M., Filser, J.G., Laib, R.J., Ottenwälder, H.: Binding kinetics of vinyl chloride and vinyl bromide at very low doses. Arch. Toxicol. Suppl. 3, 129–142 (1980)Google Scholar
  12. Bolt, H.M., Kappus, H., Buchter, A., Bolt, W.: Untersuchungen zum Stoffwechsel von Vinylchlorid unter dem Blickpunkt der chemischen Kanzerogenese. Verh. Dtsch. Ges. Arbeitsmedizin (Gentner, Stuttgart) 16, 181–186 (1976b)Google Scholar
  13. Bolt, H.M., Kappus, H., Kaufmann, R., Appel, K.E., Buchter, A., Bolt, W.: Metabolism of 14C-vinyl chloride in vitro and in vivo. INSERM Symposia Series (Paris) 52, 151–163 (1976a)Google Scholar
  14. Bolt, H.M., Laib, R.J., Stöckle, G.: Formation of preneoplastic haptocellular foci by vinyl bromide in newborn rats. Arch. Toxicol. 43, 83–84 (1979)Google Scholar
  15. Bolt, H.M., Link, B.: Zur Toxikologie von Perchlor- äthylen. Verh. Dtsch. Ges. Arbeitsmedizin(Gentner, Stuttgart) 20, (1980) in press.Google Scholar
  16. Bonse, G., Henschler, D.: Chemical reactivity, biotransformation, and toxicity of polychlorinated aliphatic compounds. CRC Crit. Rev. Toxicol. 5, 395–409 (1976)Google Scholar
  17. Bonse, G., Urban, Th., Reichert, D., Henschler, D.: Chemical reactivity, metabolic oxirane formation and biological reactivity of chlorinated ethylenes in the isolated perfused liver preparation. Biochem. Pharmacol. 24, 1829–1834 (1975)Google Scholar
  18. Burton, K.: Biochemist’s Handbook, p. 90. London (1961)Google Scholar
  19. Conolly, R.B., Jaeger, R.J., Szabo, S.: Acute hepatotoxicity of ethylene, vinyl fluoride, vinyl chloride, and vinyl bromide after Arochlor 1254 pretreatment. Exp. Mol. Pathol. 28, 25–33 (1978)Google Scholar
  20. Drew, R.T., Patel, J.M., Van Stee, E.W.: The effects of vinyl bromide in rats pretreated with phenobarbital or diethylmaleate. Toxicol. Appl. Pharmacol. 37, 176–177 (1976)Google Scholar
  21. Filser, J.G., Bolt, H.M.: Pharmacokinetics of halogenated ethylenes in rats. Arch. Toxicol. 42, 123–136 (1979)Google Scholar
  22. Filser, J.G., Bolt, H.M.: Characteristics of haloethylene-induced acetonemia in rats. Arch. Toxicol. 45, 109–116 (1980)PubMedCrossRefGoogle Scholar
  23. Filser, J.G., Bolt, H.M., Kimmich, K., Bencsâth, F.A.: Exhalation of acetone by rats on exposure to trans1,2-dichloroethylene and related compounds. Toxicol. Lett. 2, 247–252 (1978)Google Scholar
  24. Green, T., Hathway, D.E.: Interactions of vinyl chloride with rat liver DNA in vivo. Chem. -biol. Interact. 22, 211–224 (1978)PubMedCrossRefGoogle Scholar
  25. Guengerich, G.F., Crawford, W.M., Watanabe, P.G.: Activation of vinyl chloride to covalently bound metabolites: roles of 2-chloroethylene oxide and 2chloroacetaldehyde. Biochemistry 18, 5177–5182 (1979)Google Scholar
  26. Hathway, D.E.: Comparative mammalian metabolism of vinyl chloride and vinylidene chloride in relation to oncogenic potential. Environ. Hlth. Perspect. 21, 55–59 (1977)Google Scholar
  27. Henschler, D., Romen, W., Elsässer, H.M., Reichert, D., Eder, E., Radwan, Z.: Carcinogenicity study of trichloroethylene by longterm inhalation in three animal species. Arch. Toxicol. 43, 237–248 (1980)Google Scholar
  28. Jaeger, R.J., Shoner, L.G., Coffman, L.: 1,1-Dichloroethylene hepatotoxicity: proposed mechanism of action and distribution and binding of 14C radio-activity following inhalation exposure in rats. Environ. Hlth. Perspect. 21, 113–119 (1977)Google Scholar
  29. Jocelyn, P.C.: Biochemistry of the SH-group, p. 63–64, Academic Press, London/New York (1972)Google Scholar
  30. Jones, B.K., Hathway, D.E.: The biological fate of vinylidene chloride in rats. Chem.-biol. Interact. 20, 27–41 (1978)CrossRefGoogle Scholar
  31. Kappus, H., Bolt, H.M., Buchter, A., Bolt, W.: Rat liver microsomes catalyse covalent binding of 14C-vinyl chloride to macromolecules. Nature 257, 134–135 (1975)Google Scholar
  32. Kappus, H., Bolt, H.M., Buchter, A., Bolt, W.: Liver microsomal uptake and transformation to protein alkylating metabolites in vitro. Toxicol. Appl. Pharmacol. 37, 461–471 (1976)Google Scholar
  33. Köster, U., Albrecht, D., Kappus, H.: Lipid peroxidation induced by different halogenated aliphatic hydrocarbons as measured by malondialdehyde formation in vitro and by ethane evolution in vivo. In: Industrial and Environmental Xenobiotics, Excerpta Medica Internat. Congr. Series 440 (1978)Google Scholar
  34. Kuss, E.: Water-soluble metabolites of estrogens. Hoppe-Seyler’s Z. physiol. Chem. 352, 817–836 (1971)Google Scholar
  35. Laib, R.J., Bolt, H.M.: Alkylation of RNA by vinyl chloride metabolites in vitro and in vivo: formation of 1,N6-ethenoadenosine. Toxicology 8, 185195 (1977)Google Scholar
  36. Laib, R.J., Bolt, H.M.: Formation of 3,N4-ethenocytidine moieties in RNA by vinyl chloride metabolites in vitro and in vivo. Arch. Toxicol. 39, 235–240 (1978)Google Scholar
  37. Laib, R.J., Ottenwälder, H., Bolt, H.M.: Alkylation of RNA by vinyl chloride and vinyl bromide metabolites in vivo: effect on protein biosynthesis. Naunyn-Schmiedeberg’s Arch. Pharmacol. Suppl. 313, R 63 (1980)Google Scholar
  38. Laib, R.J., Stöckle, G., Bolt, H.M., Kunz, W.: Vinyl chloride and trichloroethylene: comparison of alkylating effects of metabolites and induction of preneoplastic enzyme deficiencies in rat liver. J. Cancer Res. Crin. Oncol. 94, 139–147 (1979)Google Scholar
  39. Lee, C.C., Bhandari, J.C., Winston, J.M., House, W.B., Peters, P.J., Dixon, R.L., Woods, J.S.: Inhalation toxicity of vinyl chloride and vinylidene chloride. Environ. Hlth. Perspect. 21, 25–32 (1977)Google Scholar
  40. Lutz, W.K.: In vivo covalent binding of organic chemicals to DNA as a quantitative indicator in the process of chemical carcinogenesis. Mut. Res. 65, 289–356 (1979)Google Scholar
  41. Lynen, F., Reichert, E., Rueff, L.: Zum biologischen Ab- bau der Essigsäure. VI. Aktivierte Essigsäure, ihre Isolierung aus Hefe und ihre chemische Natur. Liebig’s Ann. Chem. 574 1–32 (1951)Google Scholar
  42. Maltoni, C.: Recent findings on carcinogenicity of chlorinated olefins. Environ. Hlth. Perspect. 21, 1–5 (1977)Google Scholar
  43. Müller, G., Norpoth, K., Eckard, R.: Identification of two urine metabolites of vinyl chloride by GC-MS investigations. Int. Arch. Occup. Environ. Hlth. 38, 69–75 (1976)Google Scholar
  44. Ostermann-Golkar, S., Hultmark, D., Segerbäck, D., Calleman, C.J., Göthe, R., Ehrenberg, L., Wachtmeister, C.A.: Alkylation of DNA and proteins in mice exposed to vinyl chloride. Biochem. Biophys. Res. Commun. 76, 259–266 (1977)Google Scholar
  45. Ottenwälder, H., Laib, R.J., Bolt, H.M.: Alkylation of RNA by vinyl bromide metabolites in vitro and in vivo. Arch. Toxicol. 41, 279–286 (1979)Google Scholar
  46. Ottenwälder, H., Laib, R.J., Filser, J.G., Bolt, H.M.: Disposition and metabolic activation of vinyl bromide in rats. 7th Internat. Congr. Pharmacol., Paris, Abstract 719 (1978)Google Scholar
  47. Pegg, D.G., Zempel, J.A., Braun, H.W., Watanabe, P.G.: Disposition of tetrachloro-14C-ethylene following oral and inhalation exposure in rats. Toxicol. Appl. Pharmacol. 51, 465–474 (1979)Google Scholar
  48. Reichert, D., Werner, H.W., Metzler, M., Henschler, D.: Molecular mechanism of 1,1-dichloroethylene toxicity: excreted metabolites reveal different pathways of reactive intermediates. Arch. Toxicol. 42, 159–169 (1979)Google Scholar
  49. Reitz, R.H., Watanabe, P.G., McKenna, M.J., Quast, J.F.: Gehring, P.J.: Effects of vinylidene chloride on DNA synthesis and DNA repair in the rat and mouse: a comparative study with dimethylnitrosamine. Toxicol. App. Pharmacol. 52, 357–370 (1980)Google Scholar
  50. Robinson, A.M., Williamson, D.H.: Physiological roles of ketone bodies as substrates and signals in mammalian tissues. Physiol. Rev. 60, 143–187 (1980)PubMedGoogle Scholar
  51. Schoental, R.: Alkylation of coenzymes and the acute effects of alkylating hepatotoxins. FEBS Lett. 61, 111–114 (1976)Google Scholar
  52. Schumann, A.M., Quast, J.F., Watanabe, P.G.: The pharmacokinetics and macromolecular interactions of perchloroethylene in mice and rats as related to oncogenicity. Toxicol. App. Pharmacol. in press.Google Scholar
  53. Uehleke, H., Poplawski-Tabarelli, S.: Irreversible binding of 14C-labelled trichloroethylene to mice liver constituents in vivo and in vitro. Arch. Toxicol. 37, 289–294 (1977)PubMedCrossRefGoogle Scholar
  54. Van Duuren, B.L., Banerjee, S.: Covalent interaction of metabolites of the carcinogen trichloroethylene in rat hepatic microsomes. Cancer Res. 36, 24192422 (1976)Google Scholar
  55. Watanabe, P.G., Hefner, R.E., Gehring, P.J.: Vinyl chloride induced depression of hepatic non-protein sulfhydryl content and effects on bromosulphalein clearance in rats. Toxicology 6, 1–8 (1976a)Google Scholar
  56. Watanabe, P.G., McGowan, G.R., Madrid, E.O., Gehring, P.G.: Fate of 14C-vinyl chloride following inhalation exposure in rats. Toxicol. Appl. Pharmacol. 37, 49–59 (1976b)Google Scholar

Copyright information

© Springer Science+Business Media New York 1982

Authors and Affiliations

  • H. M. Bolt
    • 1
  • J. G. Filser
    • 1
  • R. J. Laib
    • 1
  1. 1.Abteilung für ToxikologiePharmakologisches Institut der UniversitätMainz 1Germany

Personalised recommendations