In Vivo Regulation of Hepatic Glutathione Synthesis: Effects of Food Deprivation or Glutathione Depletion by Electrophilic Compounds

  • Bernhard H. Lauterburg
  • Jerry R. Mitchel
Part of the Advances in Experimental Medicine and Biology book series (AEMB)


Glutathione traps reactive intermediates of compounds such as acetaminophen and prevents their covalent binding to tissue macromolecules and their hepatotoxicity (Mitchell et al., 1973). The availability of glutathione for conjugate formation is, therefore, a critical determinant of the toxicity of electrophilic drug metabolites capable of alkylating nucleophilic sites on vital hepatic molecules. Indeed, depletion of glutathione by diethyl maleate leads to a striking increase in the extent of liver injury caused by such drug metabolites (Potter et al., 1974).


Glutathione Synthesis Precursor Amino Acid Mercapturic Acid Hepatic Glutathione Fast Animal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bartoli, G.M., and Sies, H.: Reduced and oxidized glutathione efflux from liver. Febs. Lett. 86: 89–91, 1978.PubMedCrossRefGoogle Scholar
  2. 2.
    Griffith, O. W., Bridges, R. J., and Meister, A: Evidence that the a -glutamyl cycle functions in vivo using intracellular glutathione: Effects of amino acids and selective inhibition of enzymes. Proc. Natl. Acad. Sci. U.S.A. 75: 54055408, 1978.Google Scholar
  3. 3.
    Griffith, 0. W., and Meister, A.: Glutathione: interorgan translocation, turnover, and metabolism. Proc. Natl. Acad. ci. U.S.A. 76: 5606–5610, 1979.Google Scholar
  4. 4.
    Henriques, S. B., Henriques, O. B., and Mandelbaum, F. R.: Incorporation of glycine into glutathione and fibrinogen of rats under adrenaline treatment. Biochem. J. 66: 222–227, 1957.PubMedGoogle Scholar
  5. 5.
    Higashi, T., Tateishi, N., Naruse, A., and Sakamoto, Y.: Decrease of glutathione and induction of a-glutamyl transferase by dibutyryl–3’, 5’ cyclic AMP in rat liver. Biochem. Biophys. Res. Comm. 68: 1280–1286, 1976.Google Scholar
  6. 6.
    Higashi, T., Tateishi, N. Naruse, A., and Sakamoto, Y.: A novel physiological role of liver glutathione as a reservoir for L-cysteine. J. Biochem. (Tokyo) 83: 117–124, 1977.Google Scholar
  7. 7.
    Lauterburg, B. H., and Mitchell, J. R.: Increased hepatic glutathione (GSH) turnover following amino acid (AA) infusion: evidence for the function of the y-glutamyl-cycle in vivo. Gastroenterology 77: A24, 1979.Google Scholar
  8. 8.
    Lauterburg, B. H., Vaishnav, Y.,Stillwell, W. G., and Mitchell, J. R.: The effects of age and glutathione depletion on hepatic glutathione turnover in vivo determined by acetaminophen probe analysis. J. Pharmacol. Exp. Ther. 213: 5459, 1980a.Google Scholar
  9. 9.
    Lauterburg, B. H., and Mitchell, J. R.: Increased hepatic glutathione synthesis during fasting. Gastroenterology 78: A15, 1980b.Google Scholar
  10. 10.
    Leaf, G., and Neuberger, A: The effect of diet on the gluta- thione content of the liver. J. Biochem. 41: 280–287, 1947.Google Scholar
  11. 11.
    McLean, A. E. M., and Day, P. A.: The effect of diet on the toxicity of paracetamol and the safety of paracetamol-methionine mixtures. Biochem. Pharmacol. 24: 37–42, 1975.PubMedCrossRefGoogle Scholar
  12. 12.
    Mitchell, J. R., Jollow, D. J., Potter, W. Z., Gillette, J. R., and Brodie, B. B.: Acetaminophen-induced hepatic necrosis. IV. Protective role of glutathione. J. Pharmacol. Exp. Ther. 187: 211–217, 1973.PubMedGoogle Scholar
  13. 13.
    Pessayre, D., Dolder, A. Artigou, J. Y., Wandscheer, J. C., Descatoire, V., DeGott, C., and Benhamou, J. P.: Effect of fasting on metabolite-mediated hepatotoxicity in the rat Gastroenterology 77: 264–271, 1979.Google Scholar
  14. 14.
    Potter, W. Z., Thorgeirsson, S. S., Jollow, D. J., and Mitchell, J. R.: Acetaminophen-induced hepatic necrosis. V. Correlation of hepatic necrosis, covalent binding and glutathione depletion in hamsters. Pharmacology (Basel) 12: 129143, 1974.Google Scholar
  15. 15.
    Richman, P. G., and Meister, A.: Regulation of y -glutamylcysteine synthetase by nonallosteric feedback inhibition by glutathione. J. Biol. Chem. 250: 1422–1426, 1975.PubMedGoogle Scholar
  16. 16.
    Tateishi, N., Higashi, T., Shinya, S., Naruse, A., and Sakamoto, Y.: Studies on the regulation of glutathione level in rat liver. J. Biochem. (Tokyo) 75: 93–103, 1974.Google Scholar
  17. 17.
    Waelsch, H., and Rittenberg, D.: Glutathione II. The metabolism of glutathione studied with isotopic ammonia and glutamic acid. J. Biol. Chem. 144: 53–58, 1942.Google Scholar
  18. 18.
    Young, L.: The metabolic conversion of naphthalene to 1:2dihydronaphthalene–1:2-diol. Biochem. 41: 417–422, 1947.Google Scholar
  19. 19.
    Zampaglione, N., Jollow, I. J., Mitchell, J. R., Stripp, B. Hamrick, M., and Gillette, J. R.: Role of detoxifying enzymes in bromobenzene–induced liver necrosis. J. Pharmacol. Exp. Ther. 187: 218–227, 1973.Google Scholar

Copyright information

© Springer Science+Business Media New York 1982

Authors and Affiliations

  • Bernhard H. Lauterburg
    • 1
  • Jerry R. Mitchel
    • 1
  1. 1.Department of Medicine and Institute for LipidResearch Baylor College of MedicineHoustonUSA

Personalised recommendations