Plasma-Sprayed Beryllium

  • Ian W. Dunmur


In this volume it should be unnecessary to extol the virtues of beryllium. The aim is to show that the plasma-spray method of consolidating beryllium powder, usually followed by a densifying heat treatment, can produce high-strength material competitive in properties and cost with that made by any other route. In addition, it will be claimed that for large, thin-walled bodies this process is unmatched in economy of source material and expendable tooling. In the subdense condition, plasma-sprayed beryllium will be seen to possess such physical-property divergence from other types that special applications may come to mind.


Standoff Distance Union Carbide Full Density Residual Porosity Entrance Diameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. R. Stetson and C. A. Hauck, Plasma Spraying Techniques for Toxic and Oxidizable Materials, J. Met, 13, 479–482 (. 1961 ).Google Scholar
  2. 2.
    C. R. Manning, Jr. and E. E. Mathauser, in: Society of Aerospace Materials and Process Engineers, National Symposium on Materials for Space Vehicle Use, 6th, Seattle, Washington (November 18–20, 1963), Vol. 3.Google Scholar
  3. 3.
    T. J. Roseberry, M. L. Headman, and F. L. Parkinson, Process Development and Evaluation of Plasma-Sprayed Beryllium, Western Gear Corporation Research Report No. 649–229, 31 pages (1964).Google Scholar
  4. 4.
    S. W. Porembka, H. D. Hanes, and P. J. Gripshover, Powder Metallurgy of Beryllium, Defense Metals Information Center, Battelle Memorial Institute, Columbus, Ohio, DMIC239,23 pages (1967).Google Scholar
  5. 5.
    T. A. Taylor and R. J. Baird, Process for Heat Treating Plasma Consolidated Beryllium, U.S. Patent No. 3, 791, 851 (1974).Google Scholar
  6. 6.
    R. J. Baird and T. A. Taylor, High Energy-Absorbtion Beryllium Made by Plasma Consolidation, U.S. Patent No, 3,853, 549 (1974).Google Scholar
  7. 7.
    N. P. Pinto and A. J. Martin, High Purity Beryllium Powder Components, Powder Metall. 17 (33), 70–84 (1974).Google Scholar
  8. 8.
    M. Headman, Western Gear Corporation Report, in AFSC Summary of the 7th Refractory Composites Working Group Meeting, Vol, 3, 764–781 (1963).Google Scholar
  9. 9.
    J. C. Bittence, Making Parts with a Plasma-Arc Torch, Mach. Des. 45 (9), 108–114 (1973).Google Scholar
  10. 10.
    D. R. Mash, Plasma Arc Spraying of Space-Age Materials, in: ASM Conference on Materials Science and Technology for Advanced Applications, 656–681 (1962).Google Scholar
  11. 11.
    L. W. Davis, Met. Progr. 83 (3), 105–108 (1963).Google Scholar
  12. 12.
    D. M. Karpinos, V. G. Zi1’berberg, V. Kh. Kadyrov, V. P. Moroz, and V. V. Gorskii, Poroshkovaia Metallurgiia August 1974, 41–44, Soy. Powd. Metall. Met. Ceram. 13 (8), 636–638 (1975).CrossRefGoogle Scholar
  13. 13.
    G. V. Samsonov, Zashch. Pokrytiio Met. 7, 6–15 (1973).Google Scholar
  14. 14.
    R. Wachtel, Society of Aerospace Materials and Process Engineers, National. Symposium on Ceramics and Composites, Coatings and Solid Bodies, Dayton, Ohio (November 1961)-Google Scholar
  15. 15.
    E. S. Hodge, P. J. Gripshover, and H. D. Hanes, Properties of Gas-Pressure-Consolidated Beryllium Powder, in: Beiylliurn Technology, Vol. 2 (L. McD. Schetky and H. A. Johnson, eds.), pp. 703–728, Gordon and Breach, New York (1966).Google Scholar
  16. 16.
    Wall Colmonoy Company, in: Alloy News 15,2 (1970).Google Scholar
  17. 17.
    S. R. Anthony and I. W. Dunmur, Plasma Spray Coating, Study and Avoidance of Anomalously Large Particles, AWRE Report No. 055 /72 (1972).Google Scholar
  18. 18.
    W. G. Northcutt, Jr. and V. M. Hovis, Jr., Thin Beryllium Structures by Powder Metallurgy-, Oak Ridge Y-12 Plant Report No. Y-2045 (1976).Google Scholar
  19. 19.
    W. Kasperowicz and W. Schoop, I)as Electro-147etallspritzverfahren von M. U. Schoop, Carl Marhold, Halle (1920).Google Scholar
  20. 20.
    D. Dearden and I. W. Dunmur, unpublished (1970).Google Scholar
  21. 21.
    D. Roberts and J. N. Lowe, unpublished (1969).Google Scholar
  22. 22.
    Union Carbide Corporation internal report.Google Scholar
  23. 23.
    Union Carbide Corporation internal report.Google Scholar
  24. 24.
    Union Carbide Corporation internal report.Google Scholar
  25. 25.
    C. C. Meredith, J. W. Moberly, and M. Barlow, Integrated. X-Ray Diffraction Measurements of Beryllium, J. Less Common Met. 18, 423–425 (1969).CrossRefGoogle Scholar
  26. 26.
    C. A. Carow, T. R. Moules, and P. D. Bayer, private communication.Google Scholar
  27. 27.
    J. A. Carrabine, D. H. Woodard, A. J. Stonehouse, and W. W. Beaver, The Effect of AIFeBe4 on Mechanical Properties of Fabricated Polycrystalline Beryllium, in: Berylliurn Technology, Vol. 1 (L. McD. Schetky and H. A. Johnson, eds.), p. 239, Gordon and Breach, New York (1966).Google Scholar
  28. 28.
    R. A. Foos, A. J. Stonehouse, and K. A. Walsh, Micro-Alloying Relationships in Beryllium, Brush Beryllium Company, Cleveland, Ohio, BBC-TR-456 (1970).Google Scholar
  29. 29.
    S. H. Gelles, Impurity Effects in Beryllium, Metals and Ceramics Information Center, Battelle Columbus Laboratories, Columbus, Ohio, MCIC 72–06 (1972).Google Scholar
  30. 30.
    ASTM Standard Method B328–73, Density and Interconnected Porosity of Sintered Powder Metal Structural Parts and Oil Impregnated Bearings.Google Scholar
  31. 31.
    G. Arthur, J. Inst. Met. 83, 329 (1958–1959).Google Scholar
  32. 32.
    J. M. Dalla Valle, Micromeritics, p. 264, Pitman, London (1948).Google Scholar
  33. 33.
    J. Kozeny, Sitzungsber. Akad. Wiss. Wien Math. Naturwiss, Kl. Abt. 2A 136, 271 (1927).Google Scholar
  34. 34.
    I. W. Dunmur, P. D. Bayer, and A. Moore, unpublished (1971).Google Scholar
  35. 35.
    J. W. Butcher, Activated Sintering of Beryllium, in: Conférence Internationale sur ln Métallurgie du Beryllium, Grenoble, 1965, pp. 555–564, Presses Universitaires de France, Paris (1965).Google Scholar
  36. 36.
    B. B. Lympany, J. G. Theodore, and W. W. Beaver, Micro-Alloying Beryllium for Improved Sintering Characteristics and Mechanical Properties, in: Conférence Internationale sur la Métallurgie du Beryllium, Grenoble, 1965, pp, 565–573, Presses Universitaires de France, Paris (1965).Google Scholar
  37. 37.
    Union Carbide Corporation internal report.Google Scholar
  38. 38.
    G. E. Darwin and J. H. Buddery, Beryllium, p. 172, Butterworths Scientific Publications, London (1960).Google Scholar
  39. 39.
    D. Beasley, Beryllium Data Manual, unpublished.Google Scholar
  40. 40.
    M. J. Wheeler, Brit. J, Appt. Phys. 16, 365 (1965).Google Scholar
  41. 41.
    P Gordon, A High Temperature Precision X-Ray Camera. Some Measurements of Thermal Coefficient of Expansion of Beryllium, J. Appt Phys. 20, 908–917 (1949).CrossRefGoogle Scholar
  42. 42.
    G. 1, Turner and R. A. Lane, The Effect of Powder Particle Size on the Mechanical Properties of Hot Pressed High Purity Beryllium, in: Fourth International Conference on Beryl. hum, London, 1977, paper 15, The Metals Society, London (1977).Google Scholar
  43. 43.
    R. E. Cooper, unpublished (1975).Google Scholar
  44. 44.
    D. Beasley and R. E. Cooper, to be published [see also D. Beasley and R. E. Cooper, in: Fourth International Conference on Beryllium, London, 1977, paper 24, The Metals Society, London (1977)].Google Scholar
  45. 45.
    R. E, Cooper, Fracture Toughness in Beryllium, AWRE Report No. 017 /72 (1972).Google Scholar
  46. 46.
    D. R. Mash, N. E. Weare, and D. L. Walker, Process Variables in Plasma-Jet Spraying, J. Met. 13, 473–478 (1961).Google Scholar
  47. 47.
    J. E. J. Bunce, private communication (1967).Google Scholar
  48. 48.
    C. W. Marynowski, F. A. Halden, and E. P. Farley, Variables in Plasma Spraying, Eiectrochetn. Technol. 1965,. 109–115 (1965).Google Scholar
  49. 49.
    J. L. Engelke, Heat Transfer to Particles in the Plasma Flame, Proceedings of AIChE Meeting, Los Angeles, California, February 5, 1962.Google Scholar
  50. 50.
    P. B. Kantor, R. M. Krasovitskaya, and A, N. Kisel’, Determination of Enthalpy and Thermal Capacity of Beryllium in the Range 600–2200°K, Phys, Met.t e allogr. 10.42–44 (1960) [F’ïz. Met, Metalloved. 10(6), 835–837 (1960)1.Google Scholar
  51. 51.
    R. F. Smart and J. A. Catherall, Plasma.Spraying, Mills and Boon, London (1972).Google Scholar
  52. 52.
    D. L. Walker, Plasma Gun, Powder Feeder, Metering Wheel Type, British Patent No. 1, 378, 748 (1974).Google Scholar
  53. 53.
    R. E. Neal, Thermal Flow Rate Monitor for Metallic Powder, Oak Ridge Y-12 Report No, Y.SC.79.Google Scholar
  54. 54.
    B. Gross, B. Grycz, and K. Miklóssy, P(nsma Technology (English translation Z. Rudinger), R. C. G. Leckey (Ed.), Iliffe Books, London-SNTL, Prague (1963).Google Scholar
  55. 55.
    R. M. Gage, O. H. Nestor, and D. M, Yenni, Collimated Electric Arc-Powder Deposition Process, U.S. Patent No. 3,016, 447 (1962).Google Scholar
  56. 56.
    R. J. Baird, private communication.Google Scholar
  57. 57.
    J. E. Jackson, Method for Shielding a Gas Effluent, U.S. Patent No. 3, 470, 347 (1969).Google Scholar
  58. 58.
    M. Brady, unpublished.Google Scholar
  59. 59.
    H. S. Ingham and A. P. Shepard, Flame Spray Handbook (especially Vol. 3), Metco (1965).Google Scholar
  60. 60.
    R. J. Baird and T. G. Everett, Jr., Reusable Mandrel for Structures having Zero Draft or Re-Entrant Geometries, U.S. Patent No. 3, 864, 150 (1975).Google Scholar
  61. 61.
    Smithsonian Physical Tables, 9th ed., p. 363, The Smithsonian Institution, Washington (1959).Google Scholar
  62. 62.
    R. J. Baird, private communication (January 31, 1977 ).Google Scholar

Copyright information

© Springer Science+Business Media New York 1979

Authors and Affiliations

  • Ian W. Dunmur
    • 1
  1. 1.AWREAldermastonEngland

Personalised recommendations